数据结构详解——树总结(C++实现)

数据结构 专栏收录该内容
12 篇文章 0 订阅

树的逻辑结构

1.树的定义

树的定义采用递归方法
树:n(n≥0)个结点的有限集合。
当n=0时,称为空树;
任意一棵非空树满足以下条件:
⑴ 有且仅有一个特定的称为根个特定的结点;
⑵ 当n>1时,除根结点之外的其余结点被分成m(m>0)个互不相交的有限集合T1,T2,… ,Tm,其中每个集合又是一棵树,并称为这个根结点的子树。

2.树的基本术语

结点的度:结点所拥有的子树的个数。
树的度:树中各结点度的最大值。
叶子结点:度为0的结点,也称为终端结点。
分支结点:度不为0的结点,也称为非终端结点。
孩子、双亲:树中某结点子树的根结点称为这个结点的孩子结点,这个结点称为它孩子结点的双亲结点;
兄弟:具有同一个双亲的孩子结点互称为兄弟。
路径:如果树的结点序列n1, n2, …, nk有如下关系:结点ni是ni+1的双亲(1<=i<k),则把n1, n2, …, nk称为一条由n1至nk的路径;路径上经过的边的个数称为路径长度。
祖先、子孙:在树中,如果有一条路径从结点x到结点y,那么x就称为y的祖先,而y称为x的子孙。
结点所在层数:根结点的层数为1;对其余任何结点,若某结点在第k层,则其孩子结点在第k+1层。
树的深度:树中所有结点的最大层数,也称高度。
层序编号:将树中结点按照从上层到下层、同层从左到右的次序依次给他们编以从1开始的连续自然数。
有序树、无序树:如果一棵树中结点的各子树从左到右是有次序的,称这棵树为有序树;反之,称为无序树。
数据结构中讨论的一般都是有序树
森林:m (m≥0)棵互不相交的树的集合。
同构:对两棵树,若通过对结点适当地重命名,就可以使这两棵树完全相等(结点对应相等,结点对应关系也相等),则称这两棵树同构。

3.树的遍历操作

树的遍历:从根结点出发,按照某种次序访问树中所有结点,使得每个结点被访问一次且仅被访问一次。

前序遍历

树的前序遍历操作定义为:
若树为空,不进行遍历;否则
⑴ 访问根结点;
⑵ 按照从左到右的顺序前序遍历根结点的每一棵子树。

在这里插入图片描述
前序遍历序列:A B D E H I F C G

后序遍历

树的后序遍历操作定义为:
若树为空,则遍历结束;否则
⑴ 按照从左到右的顺序后序遍历根结点的每一棵子树;
⑵ 访问根结点。
在这里插入图片描述
后序遍历序列:D H I E F B G C A

层序遍历

树的层序遍历操作定义为:
从树的第一层(即根结点)开始,自上而下逐层遍历,在同一层中,按从左到右的顺序对结点逐个访问。
在这里插入图片描述
层序遍历序列:A B C D E F G H I

树的存储结构

1.双亲表示法

基本思想
用一维数组来存储树的各个结点(一般按层序存储),
数组中的一个元素对应树中的一个结点,
每个结点记录两类信息:结点的数据信息以及该结点的双亲在数组中的下标。
在这里插入图片描述
双亲表示法中结点数据类型的定义

template <class T>
struct PNode{
     T data;          //数据域
     int parent;   //指针域,双亲在数组中的下标
} ;

2.孩子表示法

孩子表示法-多重链表表示法(节点中的指针域表示孩子)

链表中的每个结点包括一个数据域和多个指针域,每个指针域指向该结点的一个孩子结点。
方案一:指针域的个数等于树的度
在这里插入图片描述
缺点:浪费空间
方案二: 指针域的个数等于该结点的度
在这里插入图片描述
在这里插入图片描述
缺点:结点结构不一致

孩子表示法-孩子链表表示法(每个节点创建一个单链表)

特点:将每个结点的所有孩子放在一起,构成线性表。
基本思想:把每个结点的孩子排列起来,看成是一个线性表,且以单链表存储,则n个结点共有 n 个孩子链表。
这 n 个单链表共有 n 个头指针,这 n 个头指针又组成了一个线性表。
为了便于进行查找采用顺序存储存储每个链表的头指针。
最后,将存放 n 个头指针的数组和存放n个结点的数组结合起来,构成孩子链表的表头数组。

在这里插入图片描述

struct CTNode
{   
     int child;
     CTNode *next;
};

在这里插入图片描述

template <class T>
struct CBNode
{     
    T data;
    CTNode *firstchild;  
};

3.孩子兄弟表示法

  • 某结点的第一个孩子是惟一的
    某结点的右兄弟是惟一的
  • 设置两个分别指向该结点的第一个孩子和右兄弟的指针
    结点结构:左儿子 右兄弟
    在这里插入图片描述
    在这里插入图片描述
template   <class T>
struct TNode{
     T data;
     TNode <T> *firstchild, *rightsib;
};

小结

顺序存储:本质上是静态指针
双亲表示法
双亲、孩子表示法
链式存储
多重链表示法
孩子链表表示法
孩子兄弟表示法

  • 0
    点赞
  • 0
    评论
  • 1
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 1024 设计师:白松林 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值