频域分析微分问题方法。

I’m thinking about a situation with a slowly varying t variable and rotor speed. In this case, phase demodulation might come into play. If I have incremental encoder pulses, I can measure the period T between edges and compute the instantaneous speed using the formula 2π/(N*T). It's interesting to note that this is a time-interval measurement approach, which means it’s not really differentiation. It’s all quite fascinating!Analyzing frequency measurement approaches

I’m exploring several ways to measure frequency, like counting pulses within gate time or tracking zero-crossings on a sin/cos encoder. Frequency estimation algorithms can be utilized, such as using CORDIC or atan2 to calculate angle from a quadrature encoder.

There's also a direct approach in the frequency domain. If I have sine and cosine of an angle, the frequency can be seen as a derivative of phase, but I can actually compute it through arctangent demodulation and a digital PLL without explicit differentiation.

Also, the Hilbert transform allows me to compute instantaneous phase, and I can form an analytical signal from complex signals. By using angle differences of these complex products, I can estimate instantaneous frequency while avoiding issues with noise. This is all interesting and intricate!Deriving frequency estimation methods

I’m providing a formula for estimating frequency: ω_est = atan2(imag(z[n]*conj(z[n-1])), real(...))/dt. This gives values in radians per second within [-π/dt, π/dt], so I’ll need to manage unwrapping. Small increments can help reduce noise, and I can apply smoothing filters before or after.

Another approach is to use a demodulating filter to estimate frequency by projecting onto sine and cosine bases, but I’m not sure how to set that up yet.

There's also spectral peak tracking using the Short-Time Fourier Transform (STFT). For slowly varying rotor speed, I can compute STFT with a window and analyze the slope of phase over time. The instantaneous frequency can be determined using phase differences between successive STFT frames at selected bins, which is interesting to consider!Clarifying frequency estimation techniques

I’m considering the signal s[n] = e^{jθ[n]} and proposing to work with the phasor e^{jθ}. To choose a "bin," I'd treat the phasor as a single tone at frequency ω, using a phase vocoder for robust frequency estimation.

For encoder pulses, I can measure frequency by calculating speed as pulses per second multiplied by 2π/N, utilizing reciprocal measurement for high resolution at low speeds.

I'll explore using a Luenberger observer for a mechanical subsystem with torque and angle outputs. The question suggests avoiding differentiation or direct frequency domain processing. Instead, possible implementations for noise reduction include Savitzky-Golay, a low-pass differentiator, or sliding linear regression. I’ll also consider providing relevant MATLAB snippets while keeping it concise.Creating frequency estimation methods

The developer wants me to present a solution in Markdown mode with concise code snippets and bullet points. One approach involves using windowed least squares for slope estimation, and I can provide a simple function for that.

For the phasor incremental method, using z = exp(1j * theta), I can compute angular differences without needing to unwrap. The PLL approach will also be outlined, providing a minimal code skeleton for a second-order digital PLL.

I need to address frequency-domain methods, implementing techniques like FFT to multiply by jω for speed estimation. I’ll also mention the potential downsides of noise amplification with differentiation.

Finally, I'll include references and brief MATLAB snippets to illustrate these methods succinctly.Exploring frequency-domain derivatives

I’m looking into frequency-domain methods for estimating rotor speed. First, I'd center the theta values by subtracting the mean, then compute the FFT of the centered data.

To find the angular frequency, I'd use jω multiplied by the FFT coefficients, and take the inverse FFT to get back to the time domain. It’s essential to handle negative frequencies properly by using shifts.

I need to provide concise bullet points and three code snippets illustrating the phasor incremental method, least squares/Savitzky-Golay filter, and the PLL approach. Plus, I’ll mention that it is indeed possible to derive rotor speed in the frequency domain while managing noise amplification with a low-pass filter design.

可以,有多种“不用直接做数值微分”或“在频域处理”的方法来估计转速/加速度。常见方案与简要 Matlab 实现如下。

方法概览

  • 相位增量/复指数法(无需展开,不用差分幅值):把角度映射到单位相量 z=exp(jθ),用相邻相量的夹角得到角速度,天然处理0/2π跳变。
  • 窗口最小二乘/SG 拟合(等价于“平滑后的导数”):在滑动窗口内拟合直线/二次曲线,斜率=速度,二次项=加速度,抗噪且不需要硬微分。
  • 数字锁相环 PLL(直接输出频率/角速度):用相位误差闭环跟踪,环路状态就是速度估计,鲁棒且可调带宽。
  • 频域法(乘 jω):θ(ω) 乘以 jω 再 IFFT 得 ω(t);同时对高频做低通以抑制噪声。
  • 编码器“周期法/计数法”:用相邻边沿的时间间隔或门控计数直接算转速,低速分辨率好(脉冲信号特别适用)。
  • 状态估计(卡尔曼/Luenberger):状态=[θ, ω, α],观测=θ,滤波器直接给出 ω/α,最稳健但需要建模/调参。
  1. 相位增量/复指数法(推荐,简单稳) 适合已得角度(弧度)且可能有0/2π跳变的数据;不需 unwrap。

    提示:可再用一阶低通对 omega 平滑;加速度可对 omega 用同样方法(或用拟合/PLL)。
  2. 滑动最小二乘(线性拟合取斜率) 等价于“带低通性质的导数”,比差分稳。


    无 Signal Toolbox 时,可用 polyfit 在滑动窗口上拟合直线/二次并取系数。

  3. 数字 PLL(直接输出速度) 对相位测量噪声更鲁棒,带宽可控。下面是简化二阶环路(类型 II),环路参数按期望带宽 BL 近似整定。

    选择 BL ≈ 5–50 Hz(看你希望的速度估计带宽),过小→响应慢,过大→噪声大。

  4. 频域法:乘 jω(可配低通整形) 在频域求导并配合低通抑制高频噪声。

    注意端点效应与窗函数;该方法本质仍是“微分”,但能同时做频域低通。

  5. 编码器周期/计数法(不把位置当连续信号)
  • 周期法:记录相邻脉冲时间间隔 Δt,速度 ω ≈ 2π/(N·Δt)(N 为每圈脉冲数)
  • 计数法:固定门控时间 Tg 内的脉冲数 Δc,速度 ω ≈ 2π·Δc/(N·Tg) 周期法低速分辨率好,计数法高速稳。
  • 状态估计(KF) 构建
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值