声明:
1、 学生刚开始学习python,代码会有很多不严谨,也较为粗糙,单纯用于广大网友参考,希望能起到一定的帮助
2、 如果要转载,请标记出来源
3、本文纯粹用于技术练习,请勿用作非法途径
4、如果有问题请在评论区指出,虚心接受立马改正
做题途中所遇问题:
无
代码块:
#2、 导入sklearn库自带的乳腺癌数据集(load_breast_cancer),
# 使用分类决策树、回归决策树、分类随机森林、回归随机森林进行分类预测,
# 并使用score()方法评估4种算法的性能,并以可视化图形(条形图)的形式显示评估结果
from sklearn.datasets import load_breast_cancer
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
#中文
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False
#共同内容
diabetes=load_breast_cancer(

这篇博客介绍了如何使用sklearn库中的决策树和随机森林进行分类与回归预测。作者作为初学者,通过代码展示了分类决策树、回归决策树、分类随机森林和回归随机森林的应用,并以条形图形式展示评估结果。
最低0.47元/天 解锁文章

283

被折叠的 条评论
为什么被折叠?



