约19世纪末,在欧州的商店中出售一种智力玩具,在一块铜板上有三根杆,最左
边的杆上自上而下、由小到大顺序串着由64个圆盘构成的塔。目的是将最左边杆上
的盘全部移到右边的杆上,条件是一次只能移动一个盘,且不允许大盘放在小盘的
上面。
*问题分析与算法设计
这是一个著名的问题,几乎所有的教材上都有这个问题。由于条件是一次只能移
动一个盘,且不允许大盘放在小盘上面,所以64个盘的移动次数是:
18,446,744,073,709,551,615
这是一个天文数字,若每一微秒可能计算(并不输出)一次移动,那么也需要几乎
一百万年。我们仅能找出问题的解决方法并解决较小N值时的汉诺塔,但很难用计算
机解决64层的汉诺塔。
分析问题,找出移动盘子的正确算法。
首先考虑a杆下面的盘子而非杆上最上面的盘子,于是任务变成了:
*将上面的63个盘子移到b杆上;
*将a杆上剩下的盘子移到c杆上;
*将b杆上的全部盘子移到c杆上。
将这个过程继续下去,就是要先完成移动63个盘子、62个盘子、61个盘子....的
工作。
为了更清楚地描述算法,可以定义一个函数movedisc(n,a,b,c)。该函数的功能
是:将N个盘子从A杆上借助C杆移动到B杆上。这样移动N个盘子的工作就可以按照以
下过程进行:
1) movedisc(n-1,a,c,b);
2) 将一个盘子从a移动到b上;
3) movedisc(n-1,c,b,a);
重复以上过程,直到将全部的盘子移动到位时为止。
*程序与程序注释
#include<stdio.h>
void movedisc(unsigned n,char fromneedle,char toneedle,char usingneedle)
;
int i=0;
void main()
{
unsigned n;
printf("please enter the number of disc:");
scanf("%d",&n); /*输入N值*/
printf("\tneedle:\ta\t b\t c\n");
movedisc(n,'a','c','b'); /*从A上借助B将N个盘子移动到C上*/
printf("\t Total: %d\n",i);
}
void movedisc(unsigned n,char fromneedle,char toneedle,char usingneedle)
{
if(n>0)
{
movedisc(n-1,fromneedle,usingneedle,toneedle);
/*从fromneedle上借助toneedle将N-1个盘子移动到usingn
eedle上*/
++i;
switch(fromneedle) /*将fromneedle 上的一个盘子移到toneedle上*/
{
case 'a': switch(toneedle)
{
case 'b': printf("\t[%d]:\t%2d.........>%2d\n",i
,n,n);
break;
case 'c': printf("\t[%d]:\t%2d...............>%2
d\n",i,n,n);
break;
}
break;
case 'b': switch(toneedle)
{
case 'a': printf("\t[%d]:\t%2d<...............>%2d\
n",i,n,n);
break;
case 'c': printf("\t[%d]:\t %2d........>%2d\
n",i,n,n);
break;
}
break;
case 'c': switch(toneedle)
{
case 'a': printf("\t[%d]:\t%2d<............%2d\n",i
,n,n);
break;
case 'b': printf("\t[%d]:\t%2d<........%2d\n",i,n,n
);
break;
}
break;
}
movedisc(n-1,usingneedle,toneedle,fromneedle);
/*从usingneedle上借助fromneedle将N-1个盘子移动到toneedle上
*/
}
}
边的杆上自上而下、由小到大顺序串着由64个圆盘构成的塔。目的是将最左边杆上
的盘全部移到右边的杆上,条件是一次只能移动一个盘,且不允许大盘放在小盘的
上面。
*问题分析与算法设计
这是一个著名的问题,几乎所有的教材上都有这个问题。由于条件是一次只能移
动一个盘,且不允许大盘放在小盘上面,所以64个盘的移动次数是:
18,446,744,073,709,551,615
这是一个天文数字,若每一微秒可能计算(并不输出)一次移动,那么也需要几乎
一百万年。我们仅能找出问题的解决方法并解决较小N值时的汉诺塔,但很难用计算
机解决64层的汉诺塔。
分析问题,找出移动盘子的正确算法。
首先考虑a杆下面的盘子而非杆上最上面的盘子,于是任务变成了:
*将上面的63个盘子移到b杆上;
*将a杆上剩下的盘子移到c杆上;
*将b杆上的全部盘子移到c杆上。
将这个过程继续下去,就是要先完成移动63个盘子、62个盘子、61个盘子....的
工作。
为了更清楚地描述算法,可以定义一个函数movedisc(n,a,b,c)。该函数的功能
是:将N个盘子从A杆上借助C杆移动到B杆上。这样移动N个盘子的工作就可以按照以
下过程进行:
1) movedisc(n-1,a,c,b);
2) 将一个盘子从a移动到b上;
3) movedisc(n-1,c,b,a);
重复以上过程,直到将全部的盘子移动到位时为止。
*程序与程序注释
#include<stdio.h>
void movedisc(unsigned n,char fromneedle,char toneedle,char usingneedle)
;
int i=0;
void main()
{
unsigned n;
printf("please enter the number of disc:");
scanf("%d",&n); /*输入N值*/
printf("\tneedle:\ta\t b\t c\n");
movedisc(n,'a','c','b'); /*从A上借助B将N个盘子移动到C上*/
printf("\t Total: %d\n",i);
}
void movedisc(unsigned n,char fromneedle,char toneedle,char usingneedle)
{
if(n>0)
{
movedisc(n-1,fromneedle,usingneedle,toneedle);
/*从fromneedle上借助toneedle将N-1个盘子移动到usingn
eedle上*/
++i;
switch(fromneedle) /*将fromneedle 上的一个盘子移到toneedle上*/
{
case 'a': switch(toneedle)
{
case 'b': printf("\t[%d]:\t%2d.........>%2d\n",i
,n,n);
break;
case 'c': printf("\t[%d]:\t%2d...............>%2
d\n",i,n,n);
break;
}
break;
case 'b': switch(toneedle)
{
case 'a': printf("\t[%d]:\t%2d<...............>%2d\
n",i,n,n);
break;
case 'c': printf("\t[%d]:\t %2d........>%2d\
n",i,n,n);
break;
}
break;
case 'c': switch(toneedle)
{
case 'a': printf("\t[%d]:\t%2d<............%2d\n",i
,n,n);
break;
case 'b': printf("\t[%d]:\t%2d<........%2d\n",i,n,n
);
break;
}
break;
}
movedisc(n-1,usingneedle,toneedle,fromneedle);
/*从usingneedle上借助fromneedle将N-1个盘子移动到toneedle上
*/
}
}