分布式表示和分布表示
标签(空格分隔): 《基于深度学习的自然语言处理》阅读笔记 NLP分布式表示 书上说:在分布式表示中,每个实体被表示为值的向量,并且实体的含义及其与其他实体的关系由向量中的激活以及不同向量之间的相似性来捕获。在语音处理的上下文中,这意味着不应将词(和句子)映射到离散维度,而是映射到共享的低维空间,其中每个单词将与d为向量相关联,词将被其与其他单词的关系和其向量中的激活值所捕获。 上面的话是书中的原文,用简洁的语言表示就是,分布式描述的是把信息分布式地存储在向量的各个维度中,与之相对的是局部表示,






