python中的广播机制(broadcasting)

在python中使用numpy进行按位运算的时候,有一个小技巧可以帮助减少代码量——那就是broadcasting,广播机制。
简单来说,broadcasting可以这样理解:如果你有一个大小为(m,n)的矩阵A,让它加减乘除一个大小为(1,n)的矩阵B,B就会被复制m次,成为一个大小为(m,n)的矩阵,然后再逐元素地进行加减乘除操作, 同样地对B大小为(m,1)的矩阵成立.

在这里插入图片描述
例如下面的, 不需要去写A + [100, 100, 100]了

A = numpy.array([1,2,3])
result = A + 100
print(result)
# 结果 [101 102 103]

同样

A = np.array([[1,2,3],[4,5,6]])
result = A + [100, 200, 300]
print(result)
#结果
#[[101 202 303]
 #[104 205 306]]

转自:https://www.jianshu.com/p/fadd169cd396

Python广播机制是指针对两个不同形状的数组进行对应项的加、减、乘、除运算时,首先将数组调整为统一的形状,然后再进行运算。这种机制在Numpy、TensorFlow和PyTorch等库都有应用。\[1\] 举个例子来阐述Python广播机制。如果有一个形状为(3,4,5)的三维数组A和一个形状为(4,5)的二维数组B,由于A和B的后缘维度都为(4,5),所以可以进行广播机制。同理,如果A为(3,4)的二维数组,B为(4,)的一维数组,它们的后缘维度都是4,所以也可以进行广播。另外,如果A为(4,5)的三维数组,B为(4,1)的二维数组,两者维度相同,但其一个维度的其一方为1,也可以进行广播。\[2\] 下面是一个验证广播机制的小程序: ```python import numpy as np a = np.array(\[\[1,2,3\],\[4,5,6\]\]) # 2*3 b = np.array(\[\[1\],\[3\]\]) # 2*1 c = a + b print(c) a = np.array(\[\[\[1,2\],\[2,3\],\[3,4\]\],\[\[2,3\],\[4,5\],\[7,8\]\]\]) # 2*3*2 b = np.array(\[\[6,6\],\[7,7\],\[8,8\]\]) # 3*2 c = a + b print(c) print(c.shape) ``` 参考链接:\[https://www.cnblogs.com/jiaxin359/p/9021726.html\](https://www.cnblogs.com/jiaxin359/p/9021726.html) \[2\] 需要注意的是,当两个数组的形状无法满足广播机制的条件时,会抛出ValueError异常。例如,如果数组a的形状为(3,3),数组b的形状为(2,3),那么它们无法进行广播运算,会抛出异常。\[3\] #### 引用[.reference_title] - *1* *3* [【Python学习记录】Numpy广播机制(broadcast)](https://blog.csdn.net/xxm524/article/details/128210631)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [python广播机制broadcasting)](https://blog.csdn.net/weixin_44319196/article/details/107871808)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值