这是一个证明对任意 a 都满足等式的题
在这种证明问题上, 我们最多的是使用数学归纳法
一般地,证明一个与自然数n有关的命题P(n),有如下步骤:
(1)证明当n取第一个值n0时命题成立。n0对于一般数列取值为0或1,但也有特殊情况; (2)假设当n=k(k≥n0,k为自然数)时命题成立,证明当n=k+1时命题也成立。 综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。
#include <iostream>
using namespace std;
int main()
{
int k, result, t;
while( cin >> k )
{
t = 1;
for( int a = 0; a <= 65; a++ )
{
result = 18 + k * a;
if( result % 65 == 0 )
{
cout << a << endl;
t = 0;
break;
}
}
if( t )
{
cout<< "no" << endl;
}
}
}
分析见百度 HDU1098