无监督聚类K-means算法

K-mean执行步骤

1,根据参数选择聚心的数量  如果分成两类,那么会随机分配两个聚心的位置,并根据聚心的位置给它分配一些点

下图 红蓝X就是两个聚心

6.jpg

2.计算分配的这些点,距离自己聚心的距离,算出平均值。聚心会根据算出的平均值,移动自己到平均值的位置,再次进行分配点

 

3,继续上一步的操作,迭代多次。直至聚心稳定。

 6.jpg6.jpg

 K-means算法,随机聚心的位置,会导致聚类结果的不同。一般会初始化聚心多次,从中选择最优的聚类。

 

转载于:https://www.cnblogs.com/HL-blog/p/8911043.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值