分类分析学习笔记1
分类分析
理解:通过对训练集进行学习,然后用测试集进行模型性能判断,最后得到需要分类或者预测的结果。
两大类:分类(含二分类和多分类)和预测。前者构造分类器,预测类别编号;后者建立预测模型,预测连续数值。
分类过程:学习过程和分类阶段。
分类任务:通过学习获得目标函数。主要有三类目标函数:布尔型函数、划分空间的目标函数、概率值的目标函数。
常用的决策树、神经网络、规则推到、最近邻
K近邻
定义:判断预测点周围的点,如果周围的大多数点都属于某一个类别的话,预测点也属于这个类别,并且预测点会继承这个类别的


