YOLO v4 使用指令

本文详细介绍了如何在YOLO v4框架下进行安装配置、模型训练、测试和性能统计。从下载预训练权重开始,通过修改配置文件适应自定义数据集,再到使用CUDA和GPU进行训练,最后讨论了迁移学习和性能评估。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文基于最原始AB大神版本的YOLO v4,其实AB大神在github上已经给出了很详尽的介绍,这里只是更方便大家上手而已。
源代码:YOLO v4

安装与配置

首先,我们要安装配置好Yolo v4

git clone https://github.com/AlexeyAB/darknet
cd darknet
make

下载作者的预训练权值 yolov4.weights 提取码:08nu 后,我们可以使用CPU进行初步的测试

./darknet detector test ./cfg/coco.data ./cfg/yolov4.cfg ./yolov4.weights data/dog.jpg

darknet目录下的predictions.jpg是产生的测试结果图像文件,测试结果如下:
在这里插入图片描述
当然,目前使用的是CPU进行检测,远远发挥不了YOLO v4的检测能力。接下来我们安装CUDA,Opencv,使用GPU进行模型的训练和检测。
注意:yolov4需要CUDA10.0以上版本支持,cuDNN也需要安装对应的版本
OpenCV的安装也有一堆大坑,在这里不展开讲解,稍后会根据大家的需求单独放一篇文章。
注意:OepnCV最好不要超过4.0版本
安装好Cuda、cuDNN以及OpenCV后,修改darknet目录下

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值