本文基于最原始AB大神版本的YOLO v4,其实AB大神在github上已经给出了很详尽的介绍,这里只是更方便大家上手而已。
源代码:YOLO v4
安装与配置
首先,我们要安装配置好Yolo v4
git clone https://github.com/AlexeyAB/darknet
cd darknet
make
下载作者的预训练权值 yolov4.weights 提取码:08nu 后,我们可以使用CPU进行初步的测试
./darknet detector test ./cfg/coco.data ./cfg/yolov4.cfg ./yolov4.weights data/dog.jpg
darknet目录下的predictions.jpg是产生的测试结果图像文件,测试结果如下:

当然,目前使用的是CPU进行检测,远远发挥不了YOLO v4的检测能力。接下来我们安装CUDA,Opencv,使用GPU进行模型的训练和检测。
注意:yolov4需要CUDA10.0以上版本支持,cuDNN也需要安装对应的版本
OpenCV的安装也有一堆大坑,在这里不展开讲解,稍后会根据大家的需求单独放一篇文章。
注意:OepnCV最好不要超过4.0版本
安装好Cuda、cuDNN以及OpenCV后,修改darknet目录下

本文详细介绍了如何在YOLO v4框架下进行安装配置、模型训练、测试和性能统计。从下载预训练权重开始,通过修改配置文件适应自定义数据集,再到使用CUDA和GPU进行训练,最后讨论了迁移学习和性能评估。
最低0.47元/天 解锁文章
1388

被折叠的 条评论
为什么被折叠?



