metashape-pro python scripts render specified viewpoint 官方python脚本使用文档主函数: 首先在metashape pro所在的文件夹中新建 ,将脚本内容写在该文件中,然后回到metashape 运行 这样metashape界面就会出现一个新的 选项,这个选项下,就是你所需要的通过脚本添加的功能。注意:每一次 集成的功能是固定死的… 如果代码发生修改,需要重新跑脚本添加相应功能,并且每个按钮是不覆盖的。2. 相机位姿的输入可参照该问题:render an image of a point cloud seen from a pose, with
【论文笔记】NeRFusion == UC San Diego == CVPR‘2022 Oral 本文工作:本文结合了实现了大尺度重建和真实照片渲染。本文工作在大尺度室内场景重建和小尺度物体场景的SOTA质量和更快速重建。
【论文笔记】Deep 3D-to-2D Watermarking == Google ==CVPR‘2022 本工作对3D网格输入进行隐式编码,然后对渲染得到的2D图像进行解码,提取水印信息。可微渲染保证了本文工作在有一系列可微3D扭曲的端到端训练。本文解码器也可以从不可微渲染器中解码信息。
【论文笔记】Manhattan-SDF == ZJU == CVPR‘2022 Oral 基于曼哈顿世界假设,采用平面约束对二维语义分割网络预测的地板和墙壁区域的几何结构进行正则化。为了解决分割不准确的问题,使用另一个MLP对3D点的语义进行编码,并设计了一种新的loss,该loss联合优化了3D空间中的场景几何和语义。曼哈顿假设:环境中存在垂直/正交的信息,如室内场景的地面、墙面、天花板通常被对齐在三个互相垂直的主方向。为了解决室内弱纹理区域等问题带来的重建困难,对地面、墙面区域设计了对应的几何约束来解决弱纹理区域的歧义性,保证重建的质量。
Ubuntu非正常断电 进入紧急模式处理办法 笔者服务器曾经历了一次非正常断电,导致开机时无法进入桌面模式,而是如下 emergency mode 情况。Google出来很多各形各色的解决方案,筛选出有效解决方案还是有点lei的… 但是是真的不想重装系统啊会谢… 只能努力修一修了…
CSP-202012-2 期末预测之最佳阈值 整体问题求解分成三个部分:遍历到第i个阈值为m,正确的数量 cnt=zeros[0:i)+ones(i:n-1]+is_one(i),后续需要处理一下重复部分。注意要去重,阈值遍历到该值时,如果res为1,则是应记录的。如果该值左边有重复0,应该减去相应的个数;如果res为0,右边重复1的情况同理。忽略了另外一个样例的情况…【具有同值重复0和同值重复1的情况】(纯粹是没认真读题读样例了…但感觉这个思路还是OK的…差不多像是前缀和问题,CSP的第二道大多数都是这个思路。简单的对输入去重是不可行的。
【论文笔记】BA-NeRF == CMU == ICCV‘2021 蓝色紫色红色NeRF的缺点之一是需要 准确的相机位姿 来学习场景表示。本文提出了BA-NeRF,可以使用不完美(甚至未知)的相机位姿来训练NeRF(联合解决3D场景表示和相机帧对齐)。本文联系了经典的图像对齐理论,并表明 从粗到精的对齐方法 也适用于NeRF。并且,如果使用位置编码对于合成图像的对齐是不利的。在合成数据和真实数据上的实验表明,BA-NeRF可以同时 有效优化场景表示和解决大的相机位姿偏移 。这使得从未知相机位姿进行视频序列的视图合成和定位成为可能,为视觉定位系统(例如SLAM)和密集3D
【论文笔记】Local Light Field Fusion == UCB == CVPR‘2019 本文提出了一个实用和强大的深度学习解决方案,用于捕捉和渲染复杂的现实世界场景的新视点,以进行虚拟探索。以前的方法要么需要难以解决的密集视图采样,要么对用户如何对场景的视图进行采样以可靠地呈现高质量的新视图几乎没有提供任何指导。相反,本文提出了一种从不规则网格采样的视图合成算法,该算法首先通过多平面图像(MPI)场景表示将每个采样的视图扩展成一个局部光场,然后通过混合相邻的局部光场渲染新的视图。本文扩展了传统的全光采样理论,得出了一个界限,准确地规定了用户在使用本文算法时应该对一个给定场景的视图进行。...
【论文笔记】Deblur-NeRF == HKU ==CVPR‘2022 神经辐射场(NeRF)由于其显著的合成质量,在三维场景重建和新视图合成方面获备受关注。然而,在野外捕捉场景时经常发生由散焦或运动引起的图像模糊,大大降低了其重建质量。为了解决这个问题,本文提出了Deblur-NeRF,这是第一个可以从模糊的输入中恢复清晰的NeRF的方法。本文可对模糊成像的过程进行建模,通过对模型合成的模糊结果进行分析从而进行去模糊。这种模拟的核心是一个新颖的可变形稀疏核(Deformable Sparse Kernel, DSK)...
【论文笔记】BungeeNeRF/CityNeRF == CUHK == ECCV‘2022 NeRF在单尺度场景下的三维物体和可控场景建模下取得优异表现。本文聚焦于多尺度场景,在截然不同的尺度上观察到的图像具有很大的变化。这些场景在真实世界的3D环境中非常常见,例如城市场景,范围可以从捕捉城市概况的卫星层级到显示建筑复杂细节的地面层级,也可以在景观和精致的3D模型中看到。在这些场景中,较宽的观察视点距离会带来具有不同细节级别和空间覆盖范围的多尺度数据,这给普通NeRF带来了巨大挑战,并走向一种折衷的结果。为了解决以上问题,本文提出了 BungeeNeRF,一种可以在剧烈变化的尺度上实现。.....
【论文笔记】Non-Rigid Point Set Registration Networks 蓝色紫色红色Non-Rigid Point Set Registration NetworksCodeAbstract 点云注册被定义为确定从 源点集到目标点集 的空间变换的过程。现有方法通常以 迭代方式 搜索最佳几何变换 以注册给定的一对点集,由 最小化预定义的对齐损失函数 驱动。相比之下,所提出的点注册神经网络(PR-Net)主动从训练数据集中学习 配准模式 作为参数函数,从而预测 所需的几何变换 以对齐一对点集。PR-Net可以将学到的知识(即注册模式)从注册训练对转移到测试对,而无需额