题目:汉诺塔(又称河内塔)问题是印度的一个古老的传说。开天辟地的神勃拉玛在一个庙里留下了三根金刚石的棒,第一根上面套着64个圆的金片,最大的一个在底下,其余一个比一个小,依次叠上去,庙里的众僧不倦地把它们一个个地从这根棒搬到另一根棒上,规定可利用中间的一根棒作为帮助,但每次只能搬一个,而且大的不能放在小的上面。解答结果请自己运行计算,程序见尾部。面对庞大的数字(移动圆片的次数)18446744073709551615,看来,众僧们耗尽毕生精力也不可能完成金片的移动。
后来,这个传说就演变为汉诺塔游戏:
1.有三根杆子A,B,C。A杆上有若干碟子
2.每次移动一块碟子,小的只能叠在大的上面
3.把所有碟子从A杆全部移到C杆上
经过研究发现,汉诺塔的破解很简单,就是按照移动规则向一个方向移动金片:
如3阶汉诺塔的移动:A→C,A→B,C→B,A→C,B→A,B→C,A→C;
此外,汉诺塔问题也是程序设计中的经典递归问题。
<?php
function hanoi($num,$a="A",$b="B",$c="C"){
global $i;
$i++;
if($num == 1){
echo "The Path {$num}: move desk 1 from ".$a." to ".$c."<br />";
}else{
hanoi($num-1,$a,$c,$b);
echo "The Path {$num}: move desk 1 from ".$a." to ".$c."<br />";
hanoi($num-1,$b,$a,$c);
}
}
//调用函数,输出结果
hanoi(64);//我的电脑比较渣,这么庞大的数据计算不出来,最大只能算到17个
//输出总步骤数
echo "Total:**{$i}**";
?>