UVA11542 Square(高斯消元 异或方程组)

 

建立方程组消元,结果为2 ^(自由变元的个数) - 1

采用高斯消元求矩阵的秩

 方法一:

#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<string>
#include<algorithm>
#include<map>
#include<queue>
#include<vector>
#include<cmath>
#include<utility>
using namespace std;
typedef long long LL;
const int N = 108, INF = 0x3F3F3F3F;
const double eps = 1e-8;
int a[N][N];

template<typename T>
int gauss_jordan(T A[N][N], int n, int m){
    int i, c;
    for(i = 0, c = 0; i < n && c < m; i++, c++){
        int r = i;
        for(int j = i + 1; j < n; j++){
            if(A[j][c]){
                r = j;
                break;
            }
        }
        if(A[r][c] == 0){
            i--;
            continue;
        }
        if(r != i){
            for(int j = 0; j <= m; j++){
                swap(A[r][j], A[i][j]);
            }
        }
        for(int k = 0; k < n; k++){
            if(k != i && A[k][c]){
                for(int j = m; j >= c; j--){
                    A[k][j] ^= A[i][j];
                }
            }
        }
    }
    return i;
}

const int MAXN = 508;
int prime[MAXN];
bool vis[MAXN];
int getPrime(int n){//求1~n的素数
	int tot=0;
	memset(vis,0,sizeof(vis));
	for(int i=2;i<=n;i++){
		if(!vis[i]){
            prime[tot++]=i;
		}
		for(int j=0;j<tot&&i*prime[j]<=n;j++){
			vis[i*prime[j]]=true;
			if(i%prime[j]==0){//让每个合数仅被其最小的质数筛去
                break;
			}
		}
	}
	return tot;
}

int main(){
    int cnt = getPrime(500);
    int t;
    cin>>t;
    while(t--){
        memset(a, 0, sizeof(a));
        int n;
        cin>>n;
        for(int j = 0; j < n; j++){
            LL x;
            cin>>x;
            for(int i = 0; i < cnt && prime[i]<= x; i++){
                while(x % prime[i] == 0){
                    a[i][j] ^= 1;
                    x /= prime[i];
                }
            }
        }
        LL ans = n - gauss_jordan(a, cnt, n);
        //cout<<ans<<"  ans\n";
        cout<<((1ll << ans) - 1)<<'\n';
    }

    return 0;
}

 

方法2:

消元后非0向量的行数即为矩阵的秩,但开始出现问题一直WA,后来在消元变成上三角矩阵后,从最后一行起,找出第一个非0元素,向上消元。

应该有更巧妙的写法避免这个问题。

 

#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<string>
#include<algorithm>
#include<map>
#include<queue>
#include<vector>
#include<cmath>
#include<utility>
using namespace std;
typedef long long LL;
const int N = 108, INF = 0x3F3F3F3F;
const double eps = 1e-8;
int a[N][N];

template<typename T>
void gauss_jordan(T A[N][N], int n, int m){
    for(int i = 0; i < n; i++){
        int r = i;
        for(int j = i + 1; j < n; j++){
            if(A[j][i]){
                r = j;
                break;
            }
        }
        if(A[r][i] == 0){
            continue;
        }
        if(r != i){
            for(int j = 0; j <= m; j++){
                swap(A[r][j], A[i][j]);
            }
        }
        for(int k = i + 1; k < n; k++){
            if(k != i && A[k][i]){
                for(int j = m; j >= i; j--){
                    A[k][j] ^= A[i][j];
                }
            }
        }
    }
    for(int i = n - 1; i > 0; i--){
        for(int j = 0; j < m; j++){
            if(A[i][j]){
                for(int k = i - 1; k >= 0; k--){
                    if(A[k][j]){
                        for(int l = j; l <= m; l++){
                            A[k][l] ^= A[i][l];
                        }
                    }
                }
                break;
            }
        }
    }

}


const int MAXN = 508;
int prime[MAXN];
bool vis[MAXN];
int getPrime(int n){//求1~n的素数
	int tot=0;
	memset(vis,0,sizeof(vis));
	for(int i=2;i<=n;i++){
		if(!vis[i]){
            prime[tot++]=i;
		}
		for(int j=0;j<tot&&i*prime[j]<=n;j++){
			vis[i*prime[j]]=true;
			if(i%prime[j]==0){//让每个合数仅被其最小的质数筛去
                break;
			}
		}
	}
	return tot;
}

int main(){
    int cnt = getPrime(500);
    int t;
    cin>>t;
    while(t--){
        memset(a, 0, sizeof(a));
        int n;
        int row = 0;
        cin>>n;
        for(int j = 0; j < n; j++){
            LL x;
            cin>>x;
            for(int i = 0; i < cnt && prime[i]<= x; i++){
                while(x % prime[i] == 0){
                    row = max(row, i);
                    a[i][j] ^= 1;
                    x /= prime[i];
                }
            }
        }
        row++;
        gauss_jordan(a, row, n);
        int rk = 0;
        for(int i = 0; i < row; i++){
            for(int j = 0; j < n; j++){
                if(a[i][j]){
                    rk++;
                    break;
                }
            }
        }
        n -= rk;

        cout<<((1ll << n) - 1)<<'\n';
    }

    return 0;
}

  

转载于:https://www.cnblogs.com/IMGavin/p/5930604.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值