283 移动零

11 篇文章 0 订阅
4 篇文章 0 订阅

在这里插入图片描述
解题思路:
\qquad 适用双指针,l:最左边‘0’元素坐标;rl右边第一个非零元素坐标。
\qquad 最初的思路:将lr初始化为0,遍历数组nums若任意一个指针到达数组末尾时停止。若当前nums[l] == 0则移动r++,找到第一个非零元素时交换二者的值;否则nums[l] != 0则移动l++ ,去寻找0元素。每次仅移动一次指针(lr)。
\qquad 这个思路虽然可行,但实现代码仍有些繁琐,需要同时移动两个指针,并且考虑两个指针的范围问题。其优化的版本早已在快速排序的思想中体现。

优化思路:
\qquad l:假设以其为分界点,左边均为非零元素,右边均为0元素(指向第一个0);
\qquad r:不断向右探索的指针,指向第一个非0。
\qquad 初始化l = 0r = 0
\qquad nums[r] != 0,将nums[l](首0)与nums[r](非0)的交换位置,同时l右移1,指向下一个(第一个)0,以保证假设成立。若数组中无0元素,在移动过程中l = r;当存在0元素时,lr才会拉开距离,且相差为连续的0,nums[l]始终指向第一个0元素。

\qquad 很多算法题的解题思路,都与数学归纳法类似。要创造自己一个假设,并在每一步都要做与假设一致的操作,维持假设成立,最后将假设变成“现实”。最重要的是如何找到一个最合适的假设。

优化代码:
\qquad 1)使用swap(a,b)函数交换变量的值。而非使用中间变量temp进一步简化代码。 (头文件#include<algorithm>

class Solution {
public:
    void moveZeroes(vector<int>& nums) {
        int l = 0, r = 0;
        while(r < nums.size())
        {
            if(nums[r] != 0)
            {
                swap(nums[l], nums[r]);
                l++;
            }
            r++;
        }
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值