二叉树的遍历
二叉树的遍历有三种方式,如下:
(1)前序遍历(DLR),首先访问根结点,然后遍历左子树,最后遍历右子树。简记根-左-右。
(2)中序遍历(LDR),首先遍历左子树,然后访问根结点,最后遍历右子树。简记左-根-右。
(3)后序遍历(LRD),首先遍历左子树,然后遍历右子树,最后访问根结点。简记左-右-根。
引用自:http://ocaicai.iteye.com/blog/1047397
1.树的构建方法
2.具体代码实现:
import java.util.LinkedList;
import java.util.List;
public class BinaryTree {
private int[] array = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };//数组长度至少为2
private static List<Node> nodeList = null;
// 静态内部类
/*
* The binary tree is built using this nested node class. Each node stores
* one data element, and has left and right sub-tree pointer which may be
* null. The node is a "dumb" nested class -- we just use it for storage; it
* does not have any methods.
*/
@SuppressWarnings("unused")
private static class Node {
Node leftChild;
Node rightChild;
int data;
Node(int newData) {
leftChild = null;
rightChild = null;
data = newData;
}
}
/**
*
* @description 初始化二叉树,把一个数组的值赋给一个二叉树
*
*/
public void createBinaryTree() {
nodeList = new LinkedList<BinaryTree.Node>();
// 将数组中的值一次转换为Node节点,其left,right初始化为null
for (int nodeIndex = 0; nodeIndex < array.length; nodeIndex++) {
nodeList.add(new Node(array[nodeIndex]));
}
// 最后一个父节点的索引
int lastParentIndex = array.length / 2 - 1;
// 对前lastParentIndex-1个父节点按照父节点与孩子节点的数字关系建立二叉树
/*
* 关系分析:
* 数组下标:012345678
* 列举法:
* 数组下标是0(data=1) leftChild:数组下标1(data=2) rightChild:数组下标2(data=3)
* 数组下标是1(data=2) leftChild:数组下标3(data=4) rightChild:数组下标4(data=5)
* 数组下标是2(data=3) leftChild:数组下标5(data=6) rightChild:数组下标6(data=7)
* 数组下标是3(data=4) leftChild:数组下标7(data=8) rightChild:数组下标8(data=9)
* 。。。
* 数组下标是n leftChild:数组下标是2n+1 rightChild:数组下标是2n+2
*
*/
for (int parentIndex = 0; parentIndex < lastParentIndex; parentIndex++) {
// 设置左孩子节点
nodeList.get(parentIndex).leftChild = nodeList
.get(parentIndex * 2 + 1);
// 设置右孩子节点
nodeList.get(parentIndex).rightChild = nodeList
.get(parentIndex * 2 + 2);
}
// 最后一个父节点:因为最后一个父节点可能没有右孩子,所以单独拿出来处理
// 左孩子
nodeList.get(lastParentIndex).leftChild = nodeList
.get(lastParentIndex * 2 + 1);
// 右孩子,如果数组的长度为奇数才建立右孩子
if (array.length % 2 == 1) {
nodeList.get(lastParentIndex).rightChild = nodeList
.get(lastParentIndex * 2 + 2);
}
}
/**
*
* @description 先序遍历
* @param node 遍历开始的节点
*
*
*/
public static void preOrderTraverse(Node node){
if(node==null){
return;
}
//先打印根节点
System.out.print(node.data);
if(node.leftChild!=null){
preOrderTraverse(node.leftChild);
}
if(node.rightChild!=null){
preOrderTraverse(node.rightChild);
}
}
/**
*
* @description 中序遍历
* @param node
*
*/
public static void inOrderTraverse(Node node){
if(node==null){
return;
}
if(node.leftChild!=null){
inOrderTraverse(node.leftChild);
}
//打印根节点
System.out.print(node.data);
if(node.rightChild!=null){
inOrderTraverse(node.rightChild);
}
}
/**
*
* @description 后序遍历
* @param node
*
*/
public static void postOrderTraverse(Node node){
if(node==null){
return;
}
if(node.leftChild!=null){
postOrderTraverse(node.leftChild);
}
if(node.rightChild!=null){
postOrderTraverse(node.rightChild);
}
//打印根节点
System.out.print(node.data);
}
public static void main(String[] args) {
BinaryTree bt=new BinaryTree();
bt.createBinaryTree();
// nodeList中第0个索引处的值即为根节点
Node root = nodeList.get(0);
System.out.println("pre order:");
BinaryTree.preOrderTraverse(root);
System.out.println();
System.out.println("in order:");
BinaryTree.inOrderTraverse(root);
System.out.println();
System.out.println("post order:");
BinaryTree.postOrderTraverse(root);
}
}
3:输出:
pre order:
124895367
in order:
849251637
post order:
894526731