本文是基于github上开源代码multi-label-Inception-net(链接为https://github.com/BartyzalRadek/Multi-label-Inception-net)上给出的多标签训练模型进行多标签训练的实例,关于该文章的链接为:http://arxiv.org/abs/1512.00567
一.下载github开源代码
从github上下载开源代码,我们可以发现它需要对训练数据集的图片以及图片标签做一些改变:
1.将所有训练图像放在一个文件夹中,并在项目根目录中创建一个包含所有可能标签的文件labels.txt。例如:
2.需要为每个图像准备正确标签的文件。命名文件<image_file_name.jpg> .txt =如果您有一个图像car.jpg附带的文件将是car.jpg.txt。例如上图的1.jpg文件就需要给定标签,并且txt名字为1.jpg.txt
3.最终你需要将图片文件夹,标签文件夹,以及标签txt存放在同一个目录中,如下:其中images为装满图片的文件夹,labels.txt为所有的标签,model_dir文件夹里面为所有图片的标签,retrain.py为训练的脚本。
这篇博客介绍了如何基于Inception v3模型进行多标签图像分类的训练。首先,从github下载开源代码并准备数据,包括将MAT文件转为TXT,然后创建标签文件。训练过程中,需要注意TensorFlow版本导致的问题,并进行相应的代码修改。经过训练,得到的模型在4000次迭代后达到94.6%的训练准确率和93.8%的测试准确率。最后,利用label_image.py脚本对单个照片进行预测。
最低0.47元/天 解锁文章
2万+

被折叠的 条评论
为什么被折叠?



