数据和人工智能是数字化转型的关键

本文探讨了在人工智能发展过程中,如何通过提升数据标注的多样性、强调透明度和可解释性,以及关注人性化创新,来降低AI偏差并促进其公正性。关键措施包括多元化团队、实时数据更新和质量监控,以推动企业级AI的负责任实践。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如果说数据是数字经济的新石油,那么人工智能(AI)就是蒸汽机。利用数据和人工智能力量的公司掌握着创新的关键。就像石油和蒸汽机为运输提供燃料,并最终推动工业革命一样。2022 年,数据和人工智能为数字革命的新篇章奠定了基础,越来越多地为全球公司提供动力。

定义数据和人工智能的责任

导致AI 偏差的最大因素之一是注释者和数据标记者之间缺乏多样性,然后他们训练 AI 最终从中学习的模型。美国东北大学 Khoury 计算机科学学院公民人工智能实验室的助理教授兼主任 Saiph Savage 表示,负责任的人工智能从一开始就具有包容性的基础工作开始。

行业专家了解,当今生产中的大量 AI 模型需要带注释、标记的数据来学习,以增强 AI 的智能,并最终增强机器的整体能力。支持这一点的技术也很复杂,如自然语言处理 (NLP)、计算机视觉和情感分析。由于这些复杂性,关于如何训练人工智能的误差范围可能相当大。

可解释性和透明度

人工智能和数据标签市场的公司应该努力实现透明度和可解释性,以匹配员工和企业的利益,使其成为一个双赢的局面,每个人都能获得共同发展的优势。企业应注意以下事项,以确保内部和外部方面的透明度和可解释性:不断调整训练人工智能的数据,以反映当前的现实生活情况和数据;衡量模型的质量并使用该信息来建立模型质量指标,以跟踪其改进和性能超时;保持敏捷,将透明度视为数据标注者在进行注释时应遵循的准则;使所有反馈易于访问并优先解决。

将“人性”带到创新的前沿

通过专注于消除 AI 生产领域的偏见并打破断开系统的循环,人工智能和机器学习将变得更具包容性和代表性。很难说 AI 可以绝对负责任和合乎道德,但尽可能接近这一目标很重要。至关重要的是要有尽可能广泛和包容的代表性,以便为工程师提供最好的工具,以尽可能负责任地有效构建人工智能。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值