分析:
思路总结与借鉴: 这个题很巧妙,遇到此类题要敢于去列出方程,不要惧怕未知数比较多,比如此题很巧妙的处理为半平面交。
具体分析
设比赛总长度为1,其中游泳长度为x,自行车长度为y,赛跑长度为1-x-y,则选手i打败选手j(不能并列)的条件是
x/vi+y/ui+(1-x-y)/wi<x/vj+y/uj+(1-x-y)/wj,可以把它整理成Ax+By+C>0的形式,然后分别可以求出A.B.C;
这对应于一个半平面。这样,对于每个选手i,可以得到n-1个半平面(每个半平面代表一个选手被i打败),加上
x>0,y>0和1-x-y>0这三个固定约束,一共是n+2个半平面。如果所有半平面的交非空,则有解(半平面之中的任何一个点
对应的方案都可以是选手i打败其他n-1个人,从而夺冠),否则无解。算法的总时间复杂度为O(n^2logn),对于n<=100的规模则绰绰有余。
注意上面的数值都很小,容易产生精度误差,在后面的代码中,我们让A,B,C同时乘以10000(根据题目的数据范围) 注意: 这里处理的很巧妙,很多精度题都可以这样处理!!!!!!!
另外此题必须特判3个速度均小于/大于另一个选手的情况。大白书的特判方式不太理解,看了其他大牛的特判方式,却不适用与大白书上的代码。
注意: 许多题往往WA在特判上面,所以做题一定要考虑全面,注意特判。
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<cctype>
#include<string>
#include<set>
#include<map>
#include<queue>
#include<stack>
using namespace std;
const double eps=1e-16;
int dcmp(double x)
{
if(fabs(x)<eps) return 0;
return x>0?1:-1;
//return fabs(x) < eps ? 0 : (x > 0 ? 1 : -1);
}
struct point
{
double x;
double y;
point(){}
point(double x,double y):x(x),y(y){}
void in()
{
cin>>x>>y;
}
void out()
{
cout<<x<<' '<<y<<endl;
}
point operator + (const point &t) const
{
return point(x+t.x,y+t.y);
}
point operator - (const point &t) const
{
return point(x-t.x,y-t.y);
}
point operator * (const double &t) const
{
return point(x*t,y*t);
}
};
double cross(point a,point b)
{
return a.x*b.y-a.y*b.x;
}
double dot(point a,point b)
{
return a.x*b.x+a.y*b.y;
}
double length(point a)
{
return sqrt(dot(a,a));
}
point nomal(point t)
{
double l=length(t);
return point(-t.y/l,t.x/l);
}
struct line
{
point p;
point v;
double ang;
line() {}
line(point p,point v):p(p),v(v){
ang=atan2(v.y,v.x);
}
bool operator < (const line &l) const
{
return ang<l.ang;
}
};
bool onleft(line l,point p)
{
return cross(l.v,p-l.p)>0;
}
point getintersection(line a,line b)
{
point u=a.p-b.p;
double t=cross(b.v,u)/cross(a.v,b.v);
return a.p+a.v*t;
}
int halfplaneintersection(line *l,int n,point *poly)
{
sort(l,l+n);
int first,last;
point *p=new point[n];
line *q=new line[n];
q[first=last=0]=l[0];
for(int i=1;i<n;i++)
{
while(first<last && !onleft(l[i],p[last-1])) last--;
while(first<last && !onleft(l[i],p[first])) first++;
q[++last]=l[i];
if(fabs(cross(q[last].v,q[last-1].v))<eps)
{
last--;
if(onleft(q[last],l[i].p)) q[last]=l[i];
}
if(first<last) p[last-1]=getintersection(q[last-1],q[last]);
}
while(first<last && !onleft(q[first],p[last-1])) last--;
if(last-first<=1) return 0;
p[last]=getintersection(q[last],q[first]);
int m=0;
for(int i=first;i<=last;i++) poly[m++]=p[i];
return m;
}
const int maxn=100+10;
point poly[maxn];
line l[maxn];
int v[maxn],u[maxn],w[maxn];
int main()
{
int n;
while(cin>>n&&n)
{
for(int i=0;i<n;i++)
cin>>v[i]>>u[i]>>w[i];
for(int i=0;i<n;i++)
{
int lc=0,ok=1;
double k=10000;
for(int j=0;j<n;j++)
if(i!=j)
{
if(v[i]<=v[j]&&u[i]<=u[j]&&w[i]<=w[j])
{
ok=0;
break;
}
if(v[i]>=v[j]&&u[i]>=u[j]&&w[i]>=w[j])
continue;
double a=(k/v[j]-k/w[j])-(k/v[i]-k/w[i]);
double b=(k/u[j]-k/w[j])-(k/u[i]-k/w[i]);
double c=k/w[j]-k/w[i];
// if(a==0&&b==0&&c/k<eps)
// {
// ok=0;
// break;
// }
point p;
point v(b,-a);
//if(fabs(a)>fabs(b))
p=point(-c/a,0);
// else p=point(0,-c/b);
l[lc++]=line(p,v);
}
if(ok)
{
l[lc++]=line(point(0,0),point(0,-1));
l[lc++]=line(point(0,0),point(1,0));
l[lc++]=line(point(0,1),point(-1,1));
if(!halfplaneintersection(l,lc,poly)) ok=0;
}
if(ok) cout<<"Yes"<<endl;
else
cout<<"No"<<endl;
}
}
return 0;
}