软件工程第五次作业-项目选题

本文介绍了一个基于深度学习的血管瘤图像分割项目,旨在辅助医生进行更精准的诊断。通过NABCD模型分析,阐述了项目的需求、方法、好处、竞争和交付计划,目标是提高医疗效率,减少人为误差,并降低数据成本。
摘要由CSDN通过智能技术生成

第五次作业 项目选题

一、前言

1.项目名称

血管瘤图像分割服务的医疗助手

2.项目简介

近年来,由于深度学习方法的迅速发展,基于深度学习的图像分割算法在医学图像分割领域取得了显著的成就。深度学习在医学图像分割方面的突破对于医学领域的发展至关重要。流行病学统计数据显示,婴幼儿血管瘤的发病率为10%~12%,主要见于早产儿和女性婴幼儿。目前临床对血管瘤的病灶的分割,主要由专家人工勾画,受临床经验水平的影响,分割结果无法避免人为误差。若采用人工智能,需要较为精准且海量的样本,数据的成本较高,本项目将提供一种血管瘤图像分割的服务,为医生和病人之间提供更加高效的沟通资源,帮助医生更好的通过分割后的图像给病人做手术,也能让病人感受到当今科技的发展从而更加信任医生,从而推动医患关系良好发展。


二、NABCD模型分析

1.N (Need 需求)

流行病学统计数据显示,婴幼儿血管瘤的发病率为10%~12%,主要见于早产儿和女性婴幼儿。超声检查无创,可以为临床提供血管瘤的位置、形状以及累及范围等信息,有助于指导医生进一步治疗。在新生儿中,血管瘤患病率为2%-4%,至1岁时可高达10%-12%,患病率较高。血管瘤不仅影响患者容貌,还可发生感染、溃疡、出血甚至恶变,这些都会严重危及患者的生命,因此得了血管瘤必须及时尽早治疗,而超声影响又是辅助诊断治疗中的一项重要技术,因此潜在用户群体广

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值