机器人的运动范围

本文探讨了一种特殊的机器人移动问题,它受制于行、列坐标数位之和不超过k的限制。通过深度优先搜索算法,计算在给定网格中机器人能够到达的格子数量。解决方案涉及DFS遍历和一个辅助函数来计算坐标数字之和。

机器人的运动范围

地上有一个m行n列的方格,从坐标 [0,0] 到坐标 [m-1,n-1] 。一个机器人从坐标 [0, 0] 的格子开始移动,它每次可以向左、右、上、下移动一格(不能移动到方格外),也不能进入行坐标和列坐标的数位之和大于k的格子。例如,当k为18时,机器人能够进入方格 [35, 37] ,因为3+5+3+7=18。但它不能进入方格 [35, 38],因为3+5+3+8=19。请问该机器人能够到达多少个格子?

机器人运动的题有很多变形,但是无外乎两种解法:动态规划和DFS+回溯.
这道题显然不是动态规划的问题,题目问的是机器人能走多少个格子.因此很简单的DSF即可解决,只是多了一个判断条件即不能进入行坐标和列坐标的数位之和大于k的格子.

class Solution {
    boolean[][] visited;
    public int movingCount(int m, int n, int k) {
        visited = new boolean[m][n];
        return dfs(m,n,k,0,0);
    }

    
    public int dfs(int m,int n,int k,int i,int j){
        if(i<0 || i>=m || j<0 || j>=n || visited[i][j] ||sum(i,j)>k ){
            return 0;
        } 
        visited[i][j]=true;
        return 1+dfs(m,n,k,i+1,j)+dfs(m,n,k,i-1,j)+dfs(m,n,k,i,j+1)+dfs(m,n,k,i,j-1);
    }

    //获取数位之和
    public int sum(int i,int j){
        int sum=0;
        while(i!=0 || j!=0){
            sum+=(i%10);
            i/=10;
            sum+=(j%10);
            j/=10;
        }
        return sum;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值