OPENJUDGE NOI 8471 切割回文

本文介绍了一种通过动态规划解决切割字符串为回文子串问题的方法。算法使用两种不同的预处理方式降低时间复杂度,一种是传统的N^2级别预处理,另一种是优化到N级别的预处理。

OPENJUDGE NOI 8471 切割回文

总时间限制: 1000ms 内存限制: 65536kB
描述
阿福最近对回文串产生了非常浓厚的兴趣。
如果一个字符串从左往右看和从右往左看完全相同的话,那么就认为这个串是一个回文串。例如,“abcaacba”是一个回文串,“abcaaba”则不是一个回文串。
阿福现在强迫症发作,看到什么字符串都想要把它变成回文的。阿福可以通过切割字符串,使得切割完之后得到的子串都是回文的。
现在阿福想知道他最少切割多少次就可以达到目的。例如,对于字符串“abaacca”,最少切割一次,就可以得到“aba”和“acca”这两个回文子串。
输入
输入的第一行是一个整数 T (T <= 20) ,表示一共有 T 组数据。
接下来的 T 行,每一行都包含了一个长度不超过的 1000 的字符串,且字符串只包含了小写字母。
输出
对于每组数据,输出一行。该行包含一个整数,表示阿福最少切割的次数,使得切割完得到的子串都是回文的。


【题目分析】
第一次用Markdown写博客,感觉好赞。
收一收激动的心情,我来写题解,首先看到这道题就是很简单的背包类型的动态规划,显然是要不留缝隙地填满的。很容易想到动态规划,如果不预处理,是N^3的,然后加一个预处理复杂度就是N^2了,详见代码1.(其实这个代码是从隔壁抄来的@yhx相信他不会介意的)30ms

#include<cstdio>
#include<cstring>
bool b[1010][1010];
int dp[1010];
char s[1010];
int min(int x,int y)
{
    if (x<y) return x;
    return y;
 } 
int main()
{
    int i,j,k,l,m,n,p,q,x,y,z,T,mid;
    scanf("%d",&T);
    while (T--)
    {
        memset(b,0,sizeof(b));
        memset(dp,0x42,sizeof(dp));
        scanf("%s",s+1);
        l=strlen(s+1);
        for (k=1;k<=l;k++)
          for (i=1;i+k-1<=l;i++)
          {
            j=i+k-1;
            if (k<=2)
            {
                if (s[i]==s[j]) b[i][j]=1;
            }
            else
            {
                if (b[i+1][j-1]&&s[i]==s[j]) b[i][j]=1;
            }
          }
        dp[0]=0;
        for (i=1;i<=l;i++)
          for (j=0;j<=i;j++)
            if (b[j][i]) dp[i]=min(dp[i],dp[j-1]+1);

 printf("%d\n",dp[l]-1);
    }
}
然后我脑洞大开,可以把预处理降到N的级别,显然对总体的时间复杂度并没有什么卵用。以下是优化过的代码二。然而事实证明,比上一种方法快了两倍,#(滑稽)只有10ms。
#include <cstdio>
#include <string>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
int r[2010],dp[2010];
char s[2010],ch[2010];
inline int min(int a,int b)
{return a>b?b:a;}
inline bool pd(int l,int e)
{
    if ((r[l+e]*2-1)/2>=e-l+1) return true;
    else return false;
}
int main()
{
    int tt;
    scanf("%d",&tt);
    while (tt--)
    {
        memset(r,0,sizeof r);
        memset(dp,0x3f,sizeof dp);
        memset(r,0,sizeof r);
        dp[0]=0;
        scanf("%s",ch+1);
        int l=strlen(ch+1);
        s[1]='#';s[2*l+2]='#';//处理一下回文串 
        for (int i=1;i<=l;++i)
        {
            s[i*2]=ch[i];
            s[i*2|1]='#';
        }
        int id=0,mx=0;//高逼格manacher 
        r[0]=1;
        for (int i=1;i<=2*l+1;++i){
            if (mx>i) r[i]=min(r[2*id-i],mx-i);
            else r[i]=1;
            while (s[i-r[i]]==s[i+r[i]]) r[i]++;
            if (i+r[i]>mx) mx=i+r[i],id=i;
        }
        for (int i=1;i<=l;++i)//动态规划 
            for (int j=1;j<=i;++j)
                if (pd(j,i)) dp[i]=min(dp[i],dp[j-1]+1);
        printf("%d\n",dp[l]-1);
    }
}
### 关于OpenJudge NOI题库题目解答 #### 判断数正负 对于判断数正负这一类简单逻辑问题,可以采用条件语句来实现。通过输入一个整数并利用`if-else`结构判定其属性[^1]。 ```cpp #include <iostream> using namespace std; int main(){ int num; cin >> num; if(num > 0){ cout << "Positive number"; } else if (num < 0){ cout << "Negative number"; } else{ cout << "Zero"; } return 0; } ``` 此程序接收用户输入的一个数值,并依据该值是否大于零、小于零还是等于零输出相应的提示信息。 #### 计算阶乘 当涉及到计算较大范围内的阶乘时,则需考虑数据类型的选取以及可能遇到的大数运算情况。下面给出了一种处理不超过特定界限内自然数阶乘的方法[^2]: ```cpp #include <stdio.h> void factorial(int n, int result[]) { int i, j, carry = 0, temp; result[0] = 1; // 初始化结果数组的第一个元素为1 for(i = 1;i <= n;++i) { for(j = 0;j < 100 && result[j];++j) { // 假设最大长度不会超过100位 temp = result[j]*i + carry; result[j] = temp % 10; carry = temp / 10; } while(carry != 0) { result[j++] = carry % 10; carry /= 10; } } } // 打印大数函数省略... ``` 上述代码片段展示了如何使用数组存储多位数字来进行高精度的阶乘计算过程。 #### 取石子游戏分析 针对取石子游戏中存在的博弈论要素,在给定初始状态的情况下预测最终胜负关系是一个典型的应用场景。这里提供了一个基于递归回溯策略解决此类问题的例子[^4]: ```cpp #include <cstdio> bool canWin(long long a,long long b); int main(){ long long stoneA,stoneB; scanf("%lld%lld",&stoneA,&stoneB); puts(canWin(stoneA,stoneB)? "First":"Second"); return 0; } bool canWin(long long a,long long b){ if(a==b || !a*b)return false; bool flag=false; for(;!(flag=a>b&&canWin(b,a-b)||b>a&&canWin(a,b-a));--std::max(a,b)); return !flag; } ``` 这段代码实现了对两个堆中石头数量进行比较,并根据一定规则决定先手玩家能否获胜的功能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值