一行代码值 200 万?雷军公开小米新 Logo 引吐槽

↓推荐关注↓

今年是小米成立的第 10 年,从最初的 10 几个人创始团队,发展到如今的 3 万多员工。

为了迎接第十年,雷军透露在三年前(2017年)市场部同事曾建议他“升级品牌识别系统,先从 logo 开始。”

说干就干,随后小米市场部接触了全球多个设计团队和方案。

3 月 30 日晚上,雷军对外宣布打动他的设计方案:

大多数人第一眼看后的感觉,这不就是换了边角么?这要改 3 年吗?

斜着看对比不明显?那就换个角度:

左新,右旧

什么?换角度看了还是觉得就是换边角?

那咱们看看雷总是怎么说的。

谁设计的新 Logo?

据雷总透露,新 Logo 出自一个享誉全球的设计师:原研哉

雷总说,原研哉告知 “它不只是一个简单的、形态的变化,而是一种内在的,精神气质的升级。”

原研哉认为,小米是来自中国的国际品牌,所以在小米的品牌视觉中,应该融入东方哲学的思考,科技越是进化,就越接近生命的形态,因此,人类和科技是不断接近的。

据路边小道消息称,此次小米品牌升级的设计费高达 200 万。

网友讨论

小米新 Logo 公布后,在网上引发热(tu)议(cao)。

“这还要设计?应用商店下载下来就这样 ”

也有网友表示,贴吧APP中“小米吧”的图标就是现成的,都不用改了。

网友@王一行VIGAR 调侃找到了新 logo 的绝妙用途:视力表

还有有个细心的程序员 oszlso 在 30 日晚上发现,小米官网新 Logo 是修改 CSS 样式临时实现的:

这行样式代码立功了

border-radius: 19px;

“笑死,一行代码两百万”

200 万能让全网热议多天,也是值了。

调侃归调侃,今天中午左右,小米官网 logo 已经改成图片了,使用 CSS 样式的临时过渡方案,无伤大雅。

后话

虽然网友有很多吐槽和调侃,午休时听我们设计师同事说,其实这次小米不止是改了 logo,而是整体视觉的升级。此外,像小米这种体量的大公司,不能大改 Logo。因为原 logo 已经深入人心了,是终年累月刻在用户脑中的重要资产。

最后附上一个视频,原研哉讲解他的设计思路。

- EOF -

推荐阅读  点击标题可跳转

1、雷军 1994 年写的诗一样的代码,我把它运行起来了!

2、谁说小米没技术?雷军是这样回应的

3、雷军的留名,不是以程序员身份

关注「程序员的那些事」加星标,不错过圈内事

点赞和在看就是最大的支持❤️

已标记关键词 清除标记
相关推荐
<p> <span style="font-size:18px;">深度学习和神经网络隶属于机器学习范畴,但是由于它在行业中应用广泛、研究成果显著,成为当下最热门的研究领域,因此深度学习就作为一门独立的学科被提出来了。</span> </p> <p> <span style="font-size:18px;">本课程使用的开发工具为<span style="color:#ff0000;">TensorFlow2.X</span>,如果你刚接触TensorFlow2,“墙裂”建议你从TensorFlow2学起,因为Google团队对其做了<span style="color:#ff0000;">重大调整</span>,它极大降低了开发者学习的门槛,更加简单,易用,开发者更多的应该关注深度学习算法本身。</span> </p> <p> <span style="font-size:18px;">本课程知识覆盖全面,项目案例丰富,以项目为导向,通过动态图形展现推理过程,深入浅出,从原理到实践均能很快掌握。</span> </p> <p> <span style="font-size:18px;">课程编排如下:</span> </p> <ol> <li> <span style="font-size:18px;">神经网络原理(神经元,单层感知器,多层感知器)</span> </li> <li> <span style="font-size:18px;">TensorFlow2.X基础(环境搭建,常用函数,线性回归实现)</span> </li> <li> <span style="font-size:18px;">全连接神经网络(前馈神经网络,全连接神经网络,神经网络搭建,手写数字识别,衣物识别)</span> </li> <li> <span style="font-size:18px;">模型优化(模型复杂度,损失函数,学习率,优化器,图片增强,dropout)</span> </li> <li> <span style="font-size:18px;">CNN卷积神经网络(原理,LeNet5,AlexNet,VGGNet,InceptionNet,ResNet,物品识别)</span> </li> <li> <span style="font-size:18px;">RNN循环神经网络(原理,LSTM,GRU,股票预测)</span> </li> <li> <span style="font-size:18px;">BP神经网络(正向传播,反向传播)</span> </li> <li> <span style="font-size:18px;">实战项目(猫狗大战,人工智能古诗)</span> </li> </ol> <p>   </p> <p> 问:学习本课程需要哪些前置知识? </p> <p> 答:基本的Python编程知识,对机器学习的线性回归和逻辑回归有简单的认识即可。 课程中会专门开辟一章用于讲解TensorFlow2的知识,即使没有TensorFlow编程经验,也能快速掌握。 </p> <p> <span style="font-size:18px;color:#e53333;"><strong>注意:</strong></span> </p> <p> <span style="font-size:18px;"><strong><span style="color:#e53333;">全套数据集和实现代码</span>在<span style="color:#e53333;">第一章的第一个视频</span>位置下载。</strong></span> </p> <p> <span style="font-size:18px;"><strong><span style="color:#e53333;">每章的PPT</span>在<span style="color:#e53333;">每章的第一个视频</span>位置下载。</strong></span> </p>
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页