AI速读 From Hours to Minutes TOKENSWIFT如何实现超长序列生成无损加速?

在大语言模型(LLMs)蓬勃发展的当下,超长序列生成的效率问题却成为了拦路虎。本文将为你解读一篇重磅论文,其中提出的TOKENSWIFT框架,成功将超长序列生成时间从数小时压缩至90分钟,还保证了生成质量,堪称大语言模型领域的一大突破,快来一探究竟!

论文标题
From Hours to Minutes: Lossless Acceleration of Ultra Long Sequence Generation up to 100K Tokens
来源
arXiv:2502.18890v1 [cs.CL] + http://arxiv.org/abs/2502.18890

文章核心

研究背景

大语言模型在长文本处理、复杂推理等方面展现出强大能力,但生成超长序列时耗时过长,严重限制了其在实际场景中的应用。

研究问题

  1. 频繁模型重载:在大语言模型的自回归(AR)生成模式下,每生成一个令牌(token)都要从GPU存储单元加载整个模型到计算单元,内存访问时间长,成为生成速度的主要瓶颈。
  2. KV缓存持续增长:随着序列长度增加,关键值(KV)缓存动态管理难度增大,现有方法无法有效应对超长输出场景下的缓存问题。
  3. 重复内容生成:序列长度增加时,模型生成的文本容易出现重复,影响输出质量。

主要贡献

  1. 提出全新框架:首次提出TOKENSWIFT框架,实现了大语言模型超长序列(最长达100K令牌)生成的无损加速,在准确性上与目标模型一致,且优于增强基线模型。
  2. 显著提升速度:相比自回归生成方式,TOKENSWIFT在不同前缀长度、模型架构和规模下生成100K令牌时,速度提升超过3倍,如在LLaMA3.1-8b模型上,将生成时间从近5小时缩短至90分钟。
  3. 增强生成多样性:随着生成长度增加,TOKENSWIFT的加速效果更明显,同时能提高生成内容的多样性(通过Distinct-n指标衡量),减少重复内容。

方法论精要

  1. 核心算法/框架:TOKENSWIFT框架通过自起草(self-drafting)生成草稿令牌序列,再用基于树的注意力机制将其传递给目标(完整)模型进行验证,确保最终生成输出与目标模型预测一致,实现无损加速。
  2. 关键参数设计原理:引入额外线性层实现多令牌生成,同时设计了特殊结构,使这些线性层相互关联,既符合模型的AR性质,又不增加计算成本。在动态KV缓存管理中,设置固定预算大小|B|,保留初始|S|个KV对,按重要性替换后续KV对,并通过计算查询(Q)和键(K)的点积来确定KV对的重要性分数。对于缓解重复生成问题,引入固定惩罚窗口W和惩罚值θ,对近期生成的W个令牌进行惩罚,调整采样概率。
  3. 创新性技术组合:综合运用多令牌生成和令牌重用技术,减少模型重载频率;采用动态KV缓存更新策略,降低KV缓存加载时间;通过上下文惩罚和随机n -gram选择,缓解重复输出问题,保证输出多样性。
  4. 实验验证方式:在多种模型(如YaRN-LLaMA2-7b-128k、LLaMA3.1-8b、Qwen2.5-(1.5b,7b,14b))上进行实验,使用PG-19测试集。对比基线选择TriForce*(改进版,融入动态KV更新)和Medusa*(采用Medusa训练方法并结合TOKENSWIFT验证方法),通过评估整体接受率、加速比和Distinct-n等指标,验证TOKENSWIFT的性能。

实验洞察

  1. 性能优势:在不同模型和生成长度下,TOKENSWIFT的加速比均显著优于基线模型。如在LLaMA3.1-8b模型上生成100K令牌时,TOKENSWIFT的加速比可达3.25(前缀长度2048),接受率为0.90;而TriForce*的加速比仅为1.25,接受率为0.35。在Qwen2.5系列模型上也有类似表现,如Qwen2.5-14b生成100K令牌时,TOKENSWIFT的加速比为3.34,节省时间332.4分钟。
  2. 效率突破:相比自回归生成,TOKENSWIFT大幅提升了推理速度。随着生成长度增加,加速效果愈发明显,在大模型上优势更突出。例如在生成100K令牌时,TOKENSWIFT为14B模型节省高达5.54小时的时间。
  3. 消融研究:通过对TOKENSWIFT的关键模块进行消融实验,验证了各模块的有效性。如去除令牌重用(k=0)会导致接受率和加速比显著下降;动态部分缓存(Dynamic Partial Cache)策略在管理KV缓存时,能实现高接受率和显著加速,优于全缓存(Full Cache)和部分缓存(Partial Cache)策略;上下文惩罚能有效提高生成序列的多样性,在不同采样方法下都有明显效果,如在min-p采样中,Distinct-4得分从0.15提升到0.82。

本文由AI辅助完成。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值