Numpy基础练习(五)

import numpy as np
data=np.sin(np.arange(20)).reshape(5,4)
print(data)
ind =data.argmax(axis=0)#axis=1表示数组的变化是横向的,而axis=0的话就是纵向求平均
print(ind)#argmax就是求最大值的索引,最后的结果就是每列的最大值索引,
data_max=data[ind,range(data.shape[1])]#range这里如果是python2的话改为xrange
print(data_max)
all(data_max==data.max(axis=0))#all(data_max == data.max(axis=0)) 的含义是检查 data_max 是否与 data 在每一列上的最大值相等。当 axis=0 时,data.max(axis=0) 返回 data 每一列的最大值,data_max 应该是一个与这些最大值形状相同的数组。若两者相等,则 all 函数会返回 True,表示 data_max 包含了每一列的最大值;否则返回 False。|
[[ 0.          0.84147098  0.90929743  0.14112001]
 [-0.7568025  -0.95892427 -0.2794155   0.6569866 ]
 [ 0.98935825  0.41211849 -0.54402111 -0.99999021]
 [-0.53657292  0.42016704  0.99060736  0.65028784]
 [-0.28790332 -0.96139749 -0.75098725  0.14987721]]
[2 0 3 1]
[0.98935825 0.84147098 0.99060736 0.6569866 ]

Out[8]:

True
a=np.arange(0,40,10)
b=np.tile(a,(3,5))
print(a)
print(b)
[ 0 10 20 30]
[[ 0 10 20 30  0 10 20 30  0 10 20 30  0 10 20 30  0 10 20 30]
 [ 0 10 20 30  0 10 20 30  0 10 20 30  0 10 20 30  0 10 20 30]
 [ 0 10 20 30  0 10 20 30  0 10 20 30  0 10 20 30  0 10 20 30]]
a=np.array([[4,3,5],[1,2,1]])
print(a)
b=np.sort(a,axis=1)#按行排序,从小到大排
print(b)
a.sort(axis=1)
print(a)
a=np.array([4,3,1,2])
j=np.argsort(a)
#print(a)
print(j)
print(a[j])
[[4 3 5]
 [1 2 1]]
[[3 4 5]
 [1 1 2]]
[[3 4 5]
 [1 1 2]]
[4 3 1 2]
[2 3 1 0]
[1 2 3 4]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值