import numpy as np
data=np.sin(np.arange(20)).reshape(5,4)
print(data)
ind =data.argmax(axis=0)#axis=1表示数组的变化是横向的,而axis=0的话就是纵向求平均
print(ind)#argmax就是求最大值的索引,最后的结果就是每列的最大值索引,
data_max=data[ind,range(data.shape[1])]#range这里如果是python2的话改为xrange
print(data_max)
all(data_max==data.max(axis=0))#all(data_max == data.max(axis=0)) 的含义是检查 data_max 是否与 data 在每一列上的最大值相等。当 axis=0 时,data.max(axis=0) 返回 data 每一列的最大值,data_max 应该是一个与这些最大值形状相同的数组。若两者相等,则 all 函数会返回 True,表示 data_max 包含了每一列的最大值;否则返回 False。|
[[ 0. 0.84147098 0.90929743 0.14112001] [-0.7568025 -0.95892427 -0.2794155 0.6569866 ] [ 0.98935825 0.41211849 -0.54402111 -0.99999021] [-0.53657292 0.42016704 0.99060736 0.65028784] [-0.28790332 -0.96139749 -0.75098725 0.14987721]] [2 0 3 1] [0.98935825 0.84147098 0.99060736 0.6569866 ]
Out[8]:
True
a=np.arange(0,40,10)
b=np.tile(a,(3,5))
print(a)
print(b)
[ 0 10 20 30] [[ 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30] [ 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30] [ 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30]]
a=np.array([[4,3,5],[1,2,1]])
print(a)
b=np.sort(a,axis=1)#按行排序,从小到大排
print(b)
a.sort(axis=1)
print(a)
a=np.array([4,3,1,2])
j=np.argsort(a)
#print(a)
print(j)
print(a[j])
[[4 3 5] [1 2 1]] [[3 4 5] [1 1 2]] [[3 4 5] [1 1 2]] [4 3 1 2] [2 3 1 0] [1 2 3 4]
413

被折叠的 条评论
为什么被折叠?



