Numpy基础练习(六)

import numpy as np
#data = np.sin(np.arange(20)).reshape(5,4)
#print data
#ind = data.argmax(axis=0)
#print ind
#data_max = data[ind, xrange(data.shape[1])]
#print data_max
all(data_max == data.max(axis=0))
True
a = np.arange(0, 40, 10)
b = np.tile(a, (3, 5)) 
print b
[[ 0 10 20 30  0 10 20 30  0 10 20 30  0 10 20 30  0 10 20 30]
 [ 0 10 20 30  0 10 20 30  0 10 20 30  0 10 20 30  0 10 20 30]
 [ 0 10 20 30  0 10 20 30  0 10 20 30  0 10 20 30  0 10 20 30]]
a = np.array([[4, 3, 5], [1, 2, 1]])
#print a
#b = np.sort(a, axis=1)
#print b
#b
#a.sort(axis=1)
#print a
a = np.array([4, 3, 1, 2])
j = np.argsort(a)
print j
print a[j]
[2 3 1 0]
[1 2 3 4]

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值