import numpy as np #交换矩阵的其中两行 a=np.arange(25).reshape(5,5) print(a) a[[0,1]]=a[[1,0]] #第0行和第1行进行交换 print(a)[[ 0 1 2 3 4] [ 5 6 7 8 9] [10 11 12 13 14] [15 16 17 18 19] [20 21 22 23 24]] [[ 5 6 7 8 9] [ 0 1 2 3 4] [10 11 12 13 14] [15 16 17 18 19] [20 21 22 23 24]]
#找出数组中与给定值最接近的数 z=np.array([[0,1,2,3],[4,5,6,7]]) a=5.1 print(np.abs(z-a).argmin()) #让z-a,再找出值最小的索引5
#判断二维矩阵中有没有一整列数为0? z=np.random.randint(0,3,(2,10)) print(z) print(z.any(axis=0))
[[0 0 0 0 1 0 0 0 1 1] [0 2 1 0 2 0 0 1 0 0]] [False True True False True False False True True True]
#生成二维的高斯矩阵 help(np.random.randint)
x,y=np.meshgrid(np.linspace(-1,1,10),np.linspace(-1,1,10)) print(x) print('==========================================================') print(y) print('==========================================================') D=np.sqrt(x**2+y**2) print(D) print('==========================================================') sigma,mu=1,0 a=np.exp(-(D-mu)**2/(2*sigma**2)) print(a)[[-1. -0.77777778 -0.55555556 -0.33333333 -0.11111111 0.11111111 0.33333333 0.55555556 0.77777778 1. ] [-1. -0.77777778 -0.55555556 -0.33333333 -0.11111111 0.11111111 0.33333333 0.55555556 0.77777778 1. ] [-1. -0.77777778 -0.55555556 -0.33333333 -0.11111111 0.11111111 0.33333333 0.55555556 0.77777778 1. ] [-1. -0.77777778 -0.55555556 -0.33333333 -0.11111111 0.11111111 0.33333333 0.55555556 0.77777778 1. ] [-1. -0.77777778 -0.55555556 -0.33333333 -0.11111111 0.11111111 0.33333333 0.55555556 0.77777778 1. ] [-1. -0.77777778 -0.55555556 -0.33333333 -0.11111111 0.11111111 0.33333333 0.55555556 0.77777778 1. ] [-1. -0.77777778 -0.55555556 -0.33333333 -0.11111111 0.11111111 0.33333333 0.55555556 0.77777778 1. ] [-1. -0.77777778 -0.55555556 -0.33333333 -0.11111111 0.11111111 0.33333333 0.55555556 0.77777778 1. ] [-1. -0.77777778 -0.55555556 -0.33333333 -0.11111111 0.11111111 0.33333333 0.55555556 0.77777778 1. ] [-1. -0.77777778 -0.55555556 -0.33333333 -0.11111111 0.11111111 0.33333333 0.55555556 0.77777778 1. ]] ========================================================== [[-1. -1. -1. -1. -1. -1. -1. -1. -1. -1. ] [-0.77777778 -0.77777778 -0.77777778 -0.77777778 -0.77777778 -0.77777778 -0.77777778 -0.77777778 -0.77777778 -0.77777778] [-0.55555556 -0.55555556 -0.55555556 -0.55555556 -0.55555556 -0.55555556 -0.55555556 -0.55555556 -0.55555556 -0.55555556] [-0.33333333 -0.33333333 -0.33333333 -0.33333333 -0.33333333 -0.33333333 -0.33333333 -0.33333333 -0.33333333 -0.33333333] [-0.11111111 -0.11111111 -0.11111111 -0.11111111 -0.11111111 -0.11111111 -0.11111111 -0.11111111 -0.11111111 -0.11111111] [ 0.11111111 0.11111111 0.11111111 0.11111111 0.11111111 0.11111111 0.11111111 0.11111111 0.11111111 0.11111111] [ 0.33333333 0.33333333 0.33333333 0.33333333 0.33333333 0.33333333 0.33333333 0.33333333 0.33333333 0.33333333] [ 0.55555556 0.55555556 0.55555556 0.55555556 0.55555556 0.55555556 0.55555556 0.55555556 0.55555556 0.55555556] [ 0.77777778 0.77777778 0.77777778 0.77777778 0.77777778 0.77777778 0.77777778 0.77777778 0.77777778 0.77777778] [ 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. ]] ========================================================== [[1.41421356 1.26686158 1.1439589 1.05409255 1.0061539 1.0061539 1.05409255 1.1439589 1.26686158 1.41421356] [1.26686158 1.09994388 0.95581392 0.84619701 0.7856742 0.7856742 0.84619701 0.95581392 1.09994388 1.26686158] [1.1439589 0.95581392 0.7856742 0.64788354 0.56655772 0.56655772 0.64788354 0.7856742 0.95581392 1.1439589 ] [1.05409255 0.84619701 0.64788354 0.47140452 0.35136418 0.35136418 0.47140452 0.64788354 0.84619701 1.05409255] [1.0061539 0.7856742 0.56655772 0.35136418 0.15713484 0.15713484 0.35136418 0.56655772 0.7856742 1.0061539 ] [1.0061539 0.7856742 0.56655772 0.35136418 0.15713484 0.15713484 0.35136418 0.56655772 0.7856742 1.0061539 ] [1.05409255 0.84619701 0.64788354 0.47140452 0.35136418 0.35136418 0.47140452 0.64788354 0.84619701 1.05409255] [1.1439589 0.95581392 0.7856742 0.64788354 0.56655772 0.56655772 0.64788354 0.7856742 0.95581392 1.1439589 ] [1.26686158 1.09994388 0.95581392 0.84619701 0.7856742 0.7856742 0.84619701 0.95581392 1.09994388 1.26686158] [1.41421356 1.26686158 1.1439589 1.05409255 1.0061539 1.0061539 1.05409255 1.1439589 1.26686158 1.41421356]] ========================================================== [[0.36787944 0.44822088 0.51979489 0.57375342 0.60279818 0.60279818 0.57375342 0.51979489 0.44822088 0.36787944] [0.44822088 0.54610814 0.63331324 0.69905581 0.73444367 0.73444367 0.69905581 0.63331324 0.54610814 0.44822088] [0.51979489 0.63331324 0.73444367 0.81068432 0.85172308 0.85172308 0.81068432 0.73444367 0.63331324 0.51979489] [0.57375342 0.69905581 0.81068432 0.89483932 0.9401382 0.9401382 0.89483932 0.81068432 0.69905581 0.57375342] [0.60279818 0.73444367 0.85172308 0.9401382 0.98773022 0.98773022 0.9401382 0.85172308 0.73444367 0.60279818] [0.60279818 0.73444367 0.85172308 0.9401382 0.98773022 0.98773022 0.9401382 0.85172308 0.73444367 0.60279818] [0.57375342 0.69905581 0.81068432 0.89483932 0.9401382 0.9401382 0.89483932 0.81068432 0.69905581 0.57375342] [0.51979489 0.63331324 0.73444367 0.81068432 0.85172308 0.85172308 0.81068432 0.73444367 0.63331324 0.51979489] [0.44822088 0.54610814 0.63331324 0.69905581 0.73444367 0.73444367 0.69905581 0.63331324 0.54610814 0.44822088] [0.36787944 0.44822088 0.51979489 0.57375342 0.60279818 0.60279818 0.57375342 0.51979489 0.44822088 0.36787944]]
4万+

被折叠的 条评论
为什么被折叠?



