最短路径问题

目录

最短路径问题

1、Floyd算法代码(邻接矩阵)

2、SPFA算法代码(链式前向星)

3、Dijkstra算法(邻接表 + 优先队列) 

4、Kruskal + 并查集 


最短路径问题

1、Floyd算法代码(邻接矩阵)

Floyd 算法复杂度高(结点数n < 200 可以考虑),低效,但代码很简单,并且能求出任意两点之间的最短距离,还可以处理 有负权边的图。

代码中有一个有趣的地方,就是节点到自己的距离graph[i][i]并没有设初值为 0,graph[i][i]的值得要绕一圈才能求出,这一点可用于判断负圈。

负圈是这样产生的:

        如果某些边的权值为负数,那么图中可能有这样的环路,环路上边的权值之和为负数,这样的环路就是负圈。每走一次这个负圈,总权值就会更小,导致陷在这个圈里出不来。

Floyd

用到了动态规划的思想,求两点之间的最短距离,可以分成两种情况考虑,即经过图中的某个点 K 的路径和不经过点 K 的路径,取两者中的最短路径。

 代码如下:

#include<bits/stdc++.h>
using namespace std;
const int INF = 1e6;
const int NUM = 105;
int graph[NUM][NUM];
int n, m;
void floyd(){
    int s = 1;
    // n个中间点,每一个都考虑选与不选
    for (int k = 1; k <= n;++k)
        for (int i = 1; i <= n;++i)
            // 如果 i-->k 不通,那 i-->k-->j 肯定也不通
            if(graph[i][k]!=INF)
                for (int j = 1; j <= n;++j){
                    if(graph[i][j]>graph[i][k]+graph[k][j])
                        graph[i][j] = graph[i][k] + graph[k][j];
                }
    // 当 k = 2 时,有用到 k = 1 时计算出的graph[i][j] , k>2 也是如此。 
}
int main(){
    while(~scanf("%d %d",&n,&m)){
        if(n==0&&m==0)
            return 0;
        for (int i = 1; i <= n;++i)
            for (int j = 1; j <= n;++j)
                graph[i][j] = INF;

        while(m--){
            int a, b, c;
            scanf("%d %d %d", &a, &b, &c);
            graph[a][b] = graph[b][a] = c;
        }
        floyd();

        /*
        cout<<graph[i][j]<<endl;
        即是 i-->j 的最短路径长度。
         */
    }
    system("pause");
    return 0;
}

2、SPFA算法代码(链式前向星)

解决单源点最短路径问题,给定一个起点,求它到图中所有n个结点的最短路径。

Bellman-Ford 算法的特点是只对相邻结点进行计算。

而 SPFA 是利用队列对 Bellman-Ford 进行优化的方法。

 代码如下:

#include<bits/stdc++.h>
using namespace std;
const int INF = INT_MAX / 10;
const int NUM = 1e6 + 5;
struct Edge{
    int to, next, w;
} edge[NUM];
int n, m, cnt;
int head[NUM];
int dis[NUM]; //记录所有结点到起点的距离
bool inq[NUM]; //inq[i] = true 表示节点 i 在队列中
int Neg[NUM]; //判断负圈
int pre[NUM]; //记录前驱结点
// 打印 s-->t 最短距离路径
void print_path(int s, int t){
    if(s==t){
        printf("%d ", s);
        return;
    }
    print_path(s, pre[t]);
    printf("%d ", t);
}

void init(){
    for (int i = 0; i <= NUM;++i){
        edge[i].next = -1;
        head[i] = -1;
    }
    cnt = 0;
}
// 前向星存图(很重要!)
// cnt 代表边的数量,一条边相当于2条(无向边)
// 同时,cnt也代表着边的编号   id
// head[u] 表示 u 这个节点的最后一条边的编号
// 可以由u节点的最后一条边找到u节点的所有边
// 如果u节点还没有边,那head[u]就是 -1 了
void addedge(int u, int v, int w){
    edge[cnt].to = v;
    edge[cnt].w = w;
    edge[cnt].next = head[u];
    head[u] = cnt++; 
}
// s : 起点
int spfa(int s){
    memset(Neg, 0, sizeof(Neg));
    memset(dis, INF, sizeof(dis));
    memset(inq, false, sizeof(inq));
    Neg[s] = 1;
    dis[s] = 0;
    queue<int> Q;
    Q.push(s);
    inq[s] = true;
    while(!Q.empty()){
        int u = Q.front();
        Q.pop();
        inq[u] = false;
        // i 表示 边的编号
        for (int i = head[u]; i != -1;i = edge[i].next){
            int v = edge[i].to;
            int w = edge[i].w;
            // u 的第i个邻居v,它借道u,到s更进
            if(dis[v]>dis[u]+w){
                dis[v] = dis[u] + w;
                pre[v] = u;
                if(!inq[v]){
                    // 邻居v更新状态了,但是它不在队列中,把它放进队列中
                    inq[v] = true;
                    Q.push(v);
                    Neg[v]++;
                    // 出现负圈
                    if(Neg[v]>n){
                        return 1;
                    }
                }
            }
        }
    }
    printf("%d\n", dis[n]); // s-->n 的最短距离
    // s-->n 的最短路径
    print_path(s, n);
    return 0;
}
int main(){
    while(~scanf("%d %d", &n, &m)&&(n||m)){
        init();
        while(m--){
            int u, v, w;
            scanf("%d %d %d", &u, &v, &w);
            addedge(u, v, w);
            addedge(v, u, w);
        }
        spfa(1); // 起点是 1 
    }
    system("pause");
    return 0;
}

3、Dijkstra算法(邻接表 + 优先队列) 

Dijkstra算法应用了贪心法的思想,即“抄近路走,肯定是最短路径”。

所以,怎么找到最近的路是一个问题,而这个问题用STL的优先队列很容易就解决了。

注:当图十分巨大时,需要用到链式前向星存图。

// Dijkstra 算法代码 (邻接表 + 优先队列)
#include<bits/stdc++.h>
using namespace std;
const int INF = 1e6;
// NUM : 结点数
const int NUM = 105;
struct edge{
    int from, to, w;
};
vector<edge> e[NUM];
struct node{
    int id, dis;
    // 三种重载操作符写法
    bool operator < (const node& a) const{
        return dis > a.dis;
    }
    // friend bool operator < (const node& a,const node& b){
    //     return a.dis > b.dis;
    // }
};
// bool operator < (const node& a,const node& b){
//     return a.dis > b.dis;
// }
int n, m;
int pre[NUM];
void print_path(int s, int t){
    if(s == t){
        printf("%d ", s);
        return;
    }
    print_path(s, pre[t]);
    printf("%d ", t);
}
int dis[NUM];
bool done[NUM];
void dijkstra(){
    // 假设起点是 1 
    int s = 1;
    // 初始化
    for (int i = 1; i <= n;++i){
        dis[i] = INF;
        done[i] = false;
    }
    dis[s] = 0;
    priority_queue<node> q;
    q.push({s, dis[s]});
    while(!q.empty()){
        // id 表示加入结点的 编号
        int id = q.top().id;
        // distance 表示,该编号结点到 起始点的距离
        int distance = q.top().dis;
        q.pop();
        // id编号的结点已经找到了最短的路径
        if(done[id]){
            continue;
        }
        done[id] = true;

        /* 
        已加入的结点 都会记录起来,放在一个集合中, 下面简称为 : 集合
        每当一个新的结点加入到 集合 中之后 ( 即 done[id] = true )
        都要遍历一遍 该结点的边,通过这条边,找到其相邻的结点,
        这些相邻的结点都有可能成为下一个加入 集合 的结点
         */
        
        for (int i = 0; i < e[id].size();++i){
            edge x = e[id][i];
            // x.to是编号,x.to编号结点也已经找到了最短的路径
            if(done[x.to]){
                continue;
            }
            if(dis[x.to]>x.w+distance){
                dis[x.to] = x.w + distance;
                q.push({x.to, dis[x.to]});
                pre[x.to] = id;
            }
        }
    }
    printf("%d\n", dis[n]);
}
int main(){
    while(~scanf("%d %d", &n, &m)&&(n||m)){
        for (int i = 1; i <= n;++i){
            e[i].clear();
        }
        while(m--){
            int a, b, c;
            scanf("%d %d %d", &a, &b, &c);
            e[a].push_back({a, b, c});
            e[b].push_back({b, a, c});
        }
        dijkstra();
    }
    system("pause");
    return 0;
}

4、Kruskal + 并查集 

kruskal算法有两个关键技术:

(1) 对边进行排序。 可以使用STL的sort() 函数。

(2)处理连通性问题。 并查集是kruskal算法的绝配

// Kruskal + 并查集
#include<bits/stdc++.h>
using namespace std;
int n, m;
const int MAX = 5e3 + 5;
struct edge{
	int x, y, val;
}e[MAX];
int root[MAX];
bool cmp(const edge& a, const edge& b){
    return a.val < b.val;
}
// Find(int x) 函数功能: 找到 x 的 根
int Find(int x){
    if(x!=root[x]){
        root[x] = Find(root[x]);
    }
    return root[x];
}
int kruskal(){
    for (int i = 1; i <= m;++i){
        scanf("%d %d %d", &e[i].x, &e[i].y, &e[i].val);
    }
    // kruskal 的时间复杂度花费在对边长长度的排序上
    sort(e + 1, e + 1 + m, cmp);
    // 初始化各自为根
    for (int i = 1; i <= n;++i){
        root[i] = i;
    }
    int ans = 0;
    for (int i = 1; i <= m;++i){
        int x = e[i].x;
		int y = e[i].y;
		int val = e[i].val;
		int fx = Find(x);
		int fy = Find(y);
        // 如果两者不是同属一个源,就合并
		if (fx != fy) {
			root[fx] = fy;
			ans += val;
		}
    }
    return ans;
}
int main(){
    scanf("%d %d", &n, &m);
    int ans = kruskal();
    printf("%d\n", ans);
    system("pause");
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xingxg.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值