Github Star 8.5K,超级好用的OCR数据合成与半自动标注工具,强烈推荐!

点击左上方蓝字关注我们

OCR方向的工程师,一定需要知道这个OCR开源项目:PaddleOCR。

短短几个月,累计Star数量已超过8.5K,频频登上Github Trending 日榜月榜,称它为 OCR方向目前最火的repo绝对不为过。

最近,它又带来四大新发布与升级

  核心内容先睹为快:

  • 全新发布数据合成工具Style-Text可以批量合成大量与目标场景类似的图像,在多个场景验证,效果均提升15%以上。

  • 全新发布半自动数据标注工具PPOCRLabel有了它数据标注工作事半功倍,相比labelimg标注效率提升60%以上,社区小规模测试,好评如潮。

  • 多语言识别模型效果升级在开源测试集评估,中文、英文、韩语、法语、德语、日文识别效果均优于EasyOCR。

  • PP-OCR开发体验再升级支持动态图开发(训练调试更方便),静态图部署(预测效率更高),鱼与熊掌可以兼得。

PaddleOCR历史表现回顾

先看下PaddleOCR自去年6月开源以来,短短几个月在GitHub上的表现:

  • 6月,8.6M超轻量模型发布,GitHub Trending 全球趋势榜日榜第一。

  • 8月,开源CVPR2020顶会SOTA算法,再上GitHub趋势榜单!

  • 10月,发布PP-OCR算法,开源3.5M超轻量模型,再下Paperswithcode 趋势榜第一

这个含金量,广大的GitHub开发者们自然懂。

3.5M超超轻量模型的效果图大家直接看,绝对杠杠的。

火车票、表格、金属铭牌、翻转图片、外语都是妥妥的。

3.5M的模型能达到这个识别精度,绝对是良心之作了!

传送门:

https://github.com/PaddlePaddle/PaddleOCR

那么最近的12月份更新,又给大家带来哪些惊喜呢?

全新发布OCR数据合成工具

Style-Text

相比于传统的数据合成算法,Style-Text可以实现特殊背景下的图片风格迁移,只需要少许目标场景图像,就可以合成大量数据,效果展示如下:

1、相同背景批量数据合成

2、相同文字批量数据合成


3、图片分离前景背景


除了拉风的效果,采用这样的合成数据和真实数据一起训练,可以显著提升特殊场景的性能指标,分别以两个场景为例:

怎么样,绝对是黑科技了吧。

这项能力核心算法是基于百度和华科合作研发的文本编辑算法《Editing Text in the Wild》,链接:https://arxiv.org/abs/1908.03047

不同于常用的基于GAN的数据合成工具,Style-Text主要框架包括 

①文本前景风格迁移模块 

②背景抽取模块 

③融合模块

经过这样三步,就可以迅速实现图片文字风格迁移啦。

超强OCR数据标注工具

PPOCRLabel

除了数据合成,数据标注也一直是深度学习开发者关注的重点,无论是从成本还是时间上面,提高标注效率,降低标注成本太重要了。

PPOCRLabel通过内置高质量的PPOCR中英文超轻量预训练模型,可以实现OCR数据的高效标注。

CPU机器运行也是完全没问题的。

话不多说,直接看PPOCRLabel效果演示:

用法也是非常的简单,标注效率提升60%-80%是妥妥的。

只能说,真的太香了。

最好的多语言模型效果

简单对比一下目前主流OCR方向开源repo的核心能力:

中英文模型性能及功能对比

其中,部分多语言模型性能及功能(F1-Score)对比(仅EasyOCR提供)

值得一提的是,目前已经有全球开发者通过PR或者issue的方式为PaddleOCR提供多语言的字典和语料,在PaddleOCR上已经完成了全球主流语言的广泛覆盖:包括中文简体、中文繁体、英文、法文、德文、韩文、日文、意大利文、西班牙文、葡萄牙文、俄罗斯文、阿拉伯文、印地文、维吾尔文、波斯文、乌尔都文、塞尔维亚文(latin)、欧西坦文、马拉地文、尼泊尔文、塞尔维亚文、保加利亚文、乌克兰文、白俄罗斯文、泰卢固文、卡纳达文、泰米尔文,也欢迎更多开发者可以参与共建。

PP-OCR开发体验再升级

动态图和静态图是深度学习框架常用的两种模式。在动态图模式下,代码编写运行方式符合Python程序员的习惯,易于调试,但在性能方面, Python执行开销较大,与C++有一定差距。

相比动态图,静态图在部署方面更具有性能的优势。静态图程序在编译执行时,预先搭建好的神经网络可以脱离Python依赖,在C++端被重新解析执行,而且拥有整体网络结构也能进行一些网络结构的优化。

飞桨动态图中新增了动态图转静态图的功能,支持用户使用动态图编写组网代码。预测部署时,飞桨会对用户代码进行分析,自动转换为静态图网络结构,兼顾了动态图易用性和静态图部署性能两方面优势。

良心出品的中英文文档教程


别的不需要多说了,大家访问GitHub点过star之后自己体验吧:

https://github.com/PaddlePaddle/PaddleOCR

下周更有三节深度技术公开课等你来参加,玩转PaddleOCR就差这三节课啦~~

“扫描海报二维码报名,立即加入技术交流群”

如果您想详细了解更多飞桨的相关内容,请参阅以下文档。

·飞桨官网地址·

https://www.paddlepaddle.org.cn/

·飞桨开源框架项目地址·

GitHub: https://github.com/PaddlePaddle/Paddle 

Gitee: https://gitee.com/paddlepaddle/Paddle

·PaddleOCR项目地址·

GitHub: https://github.com/PaddlePaddle/PaddleOCR

Gitee: https://gitee.com/paddlepaddle/PaddleOCR

飞桨(PaddlePaddle)以百度多年的深度学习技术研究和业务应用为基础,是中国首个开源开放、技术领先、功能完备的产业级深度学习平台,包括飞桨开源平台和飞桨企业版。飞桨开源平台包含核心框架、基础模型库、端到端开发套件与工具组件,持续开源核心能力,为产业、学术、科研创新提供基础底座。飞桨企业版基于飞桨开源平台,针对企业级需求增强了相应特性,包含零门槛AI开发平台EasyDL和全功能AI开发平台BML。EasyDL主要面向中小企业,提供零门槛、预置丰富网络和模型、便捷高效的开发平台;BML是为大型企业提供的功能全面、可灵活定制和被深度集成的开发平台。

END

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值