1358 - 【提高】素数环

素数环排列算法
本文介绍了一种寻找素数环的算法实现。该算法通过全排列的方式找出1至n(2≤n≤10)之间的所有素数环解,并详细展示了当n为4和6时的素数环解及其实现代码。

【提高】素数环
题目描述
1~n(2<=n<=10)n个数,摆成一个环,要求相邻的两个数的和是素数,按照由小到大请输出所有可能的摆放形式。

比如:n = 4,输出形式如下

1:1 2 3 4
2:1 4 3 2
3:2 1 4 3
4:2 3 4 1
5:3 2 1 4
6:3 4 1 2
7:4 1 2 3
8:4 3 2 1
total:8

比如:n = 6,输出形式如下

1:1 4 3 2 5 6
2:1 6 5 2 3 4
3:2 3 4 1 6 5
4:2 5 6 1 4 3
5:3 2 5 6 1 4
6:3 4 1 6 5 2
7:4 1 6 5 2 3
8:4 3 2 5 6 1
9:5 2 3 4 1 6
10:5 6 1 4 3 2
11:6 1 4 3 2 5
12:6 5 2 3 4 1
total:12

输入
一个整数n(2<=n<=10)

输出
前若干行,每行输出一个素数环的解,最后一行,输出解的总数

样例
输入

4

输出

1:1 2 3 4
2:1 4 3 2
3:2 1 4 3
4:2 3 4 1
5:3 2 1 4
6:3 4 1 2
7:4 1 2 3
8:4 3 2 1
total:8

思路:
先将其看成全排列,在获得一个解的时候枚举判断相邻两个数之和是否都是素数。如果是,就找到了一组素数环,输出。

// Author:PanDaoxi
#include <bits/stdc++.h>
using namespace std;
const int inf = 11;
int n, use[inf], f=0;
bool vis[inf];
void print(){
	printf("%d:", ++f);
	for(int i=1; i<=n; i++){
		printf("%d ", use[i]);
	}
	printf("\n");
}
bool prime(int n){
	if(n <= 1){
		return false;
	}
	for(int i=2; i*i<=n; i++){
		if(n%i == 0){
			return false;
		}
	}
	return true;
}
void dfs(int k){
	if(k == n){
		bool flag = false;
		for(int i=1; i<n; i++){
			if(!prime(use[i] + use[i+1])){
				flag = true;
			}
		}
		if(!flag && prime(use[1] + use[n])){
			print();
		}
	}
	for(int i=1; i<=n; i++){
		if(!vis[i]){
			vis[i] = true;
			use[k+1] = i;
			dfs(k+1);
			vis[i] = false;
		}
	}
}
int main(){
	cin >> n;
	dfs(0);
	printf("total:%d", f);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值