Warshall‘s algorithm 算法的实现及优化(修改版)

用 Warshall’s 算法计算传递闭包

  • 离散数学定义:

t® = R u R^2 u R^3 u… 其中R^(n+1) = R^n 复合 R

矩阵表示:

M(R) = M + M^2 + M^3 +…+M^n(其中加为逻辑加)

所以我们只要按照这个公式每次更新M,最后的Mn就是传递闭包。

  • Warshall算法:

(1)置新矩阵A=M;
(2)i=1;
(3)对所有j如果A[j,i]=1,则对k=1,2,…,n,A[j,k]=A[j,k]∨A[i,k];
(4)i加1;(i是行,j是列)
(5)如果i≤n,则转到步骤3),否则停止。

  • 时间复杂度为:O(nnn)
  • 用R的无穷闭包时间复杂度为O(nnn*(n - 1))

对于每个相通的j - > i,我们可以从这个相通关系出发,看看能不能通过这条相通的j - > i,更新一下j - >k。对所有的可通关系都更新一遍M,最后的结果就是传递闭包。

实现及优化:

下面展示一些 经典代码片

void computeAPSP(const int n) {
    /* calculate shortest paths from every vertex to every vertex */
    for (int k = 0; k < n; k++) 
    {
        for (int i = 0; i < n; i++) 
        {
            for (int j = 0; j < n; j++) 
            {
                a[i][j] = min( a[i][j], a[i][k] + a[k][j] );
            }
        }
    }
}

利用矩阵的对称性优化:

void computeAPSP(const int n) 
{
    for (int k = 0; k < n; k++) 
    {
        for (int i = 0; i < n; i++) 
        {
            if (k != i) 
            {

                const int a_ki = (k < i) ? a[i][k] : a[k][i];

                for (int j = 0; j < min(k, i); j++)
                    a[i][j] = min( a[i][j], a_ki + a[k][j] );

                for (int j = k + 1; j < i; j++)
                    a[i][j] = min( a[i][j], a_ki + a[j][k] );

            }
        }
    }
}

只使用矩阵的下三角部分进行优化:

void computeAPSP(const int n) 
{
    for (int k = 0; k < n; k++) 
    {
        for (int i = 0; i < n; i++) 
        {
            if (k != i) 
            {

                const int a_ki = (k < i) ? a[i][k] : a[k][i];

                for (int j = 0; j < min(k, i); j++)
                    a[i][j] = min( a[i][j], a_ki + a[k][j] );

                for (int j = k + 1; j < i; j++)
                    a[i][j] = min( a[i][j], a_ki + a[j][k] );

            }
        }
    }
}

跳过不存在的路径的优化:

void computeAPSP(const int n) 
{
    for (int k = 0; k < n; k++) 
    {
        for (int i = 0; i < n; i++) 
        {
            if (k != i) 
            {

                const int a_ki = (k < i) ? a[i][k] : a[k][i];

                // skip if no path
                if (a_ki == POSITIVE_INFINITY)    continue;

                for (int j = 0; j < min(k, i); j++)
                    a[i][j] = min( a[i][j], a_ki + a[k][j] );

                for (int j = k + 1; j < i; j++)
                    a[i][j] = min( a[i][j], a_ki + a[j][k] );

            }
        }
    }
}

避免大量调用数学函数进行优化:

void computeAPSP(const int n) 
{
    for (int k = 0; k < n; k++) 
    {
        for (int i = 0; i < n; i++) 
        {
            if (k != i) 
            {

                const int a_ki = (k < i) ? a[i][k] : a[k][i];

                // skip if no path
                if (a_ki == POSITIVE_INFINITY)    continue;

                for (int j = 0; j < min(k, i); j++) 
                {
                    const int s_kj = a_ki + a[k][j];
                    if( s_kj < a[i][j] )    a[i][j] = s_kj;
                }

                for (int j = k + 1; j < i; j++) 
                {
                    const int s_jk = a_ki + a[j][k];
                    if( s_jk < a[i][j] )    a[i][j] = s_jk;
                }

            }
        }
    }
}
已标记关键词 清除标记