关系运算对于关系性质的保持性研究

1、Summary of keeping properties:

原有性质
运算 自反性 非自反性 对称性 非对称性 反对称性 传递性
R_1∩R_2
✔ ✔ ✔ ✔ ✔ ✔
R_1∪R_2
✔ ✔ ✔ ❌ ❌ ❌
〖R_1〗^(-1)
✔ ✔ ✔ ✔ ✔ ✔
R_1° R_2
✔ ❌ ❌ ❌ ❌ ❌

Prove:

Intersection Keeping Properties of Relation:

  • Reflexivity:

x,∵(x,x)R1,(x,x)R2,∴(x,x)R1R2.

  • Irreflexivity:

Supposing x,(x,x)R1R2,then (x,x)R1,(x,x)R2,contradiction.

  • Symmetry:

x,y,(x,y)R1R2
(x,y)R1,(x,y)R2,since R1 and R2 are symmetric, (y,x)R1, (y,x)R2
∴(y,x)R1R2.

Asymmetry:
x,y,(x,y)R1R2
(x,y)R1,(x,y)R2,since R1 and R2 are asymmetric, (y,x)R1, (y,x)R2
∴(y,x)R1R2.

  • Antisymmetry:

x,y,supposing (x,y)R1R2,then (x,y),(y,x)R1,and (x,y),(y,x)R2
since R1 and R2 are both antisymmetric,x=y.

  • Transitivity:

x,y,z if (x,y)R1R2,(y,z)R1R2,then (x,y),(y,z)R1R2,
then (x,y),(y,z)R1,and (x,y),(y,z)R2,
since R1 and R2 are both transitive, (x,y)R1,and (x,z)R2
∴(x,z)R1R2

Union Keeping Properties of Relation:

  • Reflexivity:

x,∵(x,x)R1,(x,x)R2,∴(x,x)R1R2

  • Irreflexivity:

supposing that x, (x,x)R1R2, then (x,x) R1 or (x,x)R2,but R1 and R2 are irreflexive.

  • Symmetry:

x,y,if(x,y)R1R2,then (x,y)R1 or (x,y) R2,
without losing generality,let (x,y)R1,since R1 is symmetric,
so,(y,x)R1R2

  • Asymmetry:

counterexample:R1={(1,2) },R2={(2,1)}
then R1∪R2={(1,2),(2,1)}is symmetric

Antisymmetry:
counterexample: R1={(1,2) },R2={(2,1)}
then R1∪R2={(1,2),(2,1)}is symmetric
(1,2) ∈ R1∪R2 and (2,1) ∈ R1∪R2
But 1 != 2

  • Transitivity:

counterexample:R1={(1,2),(2,3),(1,3)},R2={(2,3),(3,4),(2,4)},
R1∪R2={(1,2),(2,3),(1,3),(3,4),(2,4)} is not transitivity.

Inverse Keeping Properties of Relation:

  • Reflexivity:

x,(x,x)R1 (x,x) R1-1

  • Irreflexivity:

x,(х,х) R1 (x,x)R1-1

  • Symmetry:

х,y,if(x,y) R1-1,then (y,x) R1,since R1 is symmetric,
(х,у)R1,∴(y,x) R1-1

  • Asymmetry:

x,y,if (x,y) R1-1,then (y,x) R1,since R1 is asymmetric,
(x,y)R1,∴(y,x) R1-1

  • Antisymmetry:

x,y,if (x,y)R1-1,(y,x)R1-1,then (yx)R1,(x,y)R1,
since R1 is antisymmetric,x=y.

  • Transitivity:

x,y,z,if (x,y)R1-1,(y,z)R1-1,
then (y,x)R1,(z,y)R1,since R1 is transitive,(z,x) R1,∴(x,z)R1-1

Composition Keeping Properties of Relation:

  • Reflexivity:

х,∵(x,x)R1 and (x,x)R2,∴(х,х)R2R1

  • Irreflexivity:

counterexample:R1={(a,b)},R2={(b,a)},then R2R1={(a,a)}

  • Symmetry:

counterexample:R1-{(c,b),(b,c)},R2={(c,d),(d,c)},then R2R1={(b,d)}

  • Asymmetry:

counterexample:R1= {(a,b)},R2={(b,a)},then R2R1={(a,a)}

  • Antisymmetry:

counterexample:R1={(a,b),(d,c)},R2={(b,d),(c,a)},then R2R1={(a,d),(d,a)}

  • Transitivity:

counterexample:R1={(x,),(y,s)},R2={(t,y),(s,z)},
then R2R1={(x,y),(y,z)}

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 1024 设计师:上身试试 返回首页