1、Summary of keeping properties:
原有性质
运算 自反性 非自反性 对称性 非对称性 反对称性 传递性
R_1∩R_2
✔ ✔ ✔ ✔ ✔ ✔
R_1∪R_2
✔ ✔ ✔ ❌ ❌ ❌
〖R_1〗^(-1)
✔ ✔ ✔ ✔ ✔ ✔
R_1° R_2
✔ ❌ ❌ ❌ ❌ ❌
Prove:
Intersection Keeping Properties of Relation:
- Reflexivity:
x,∵(x,x)R1,(x,x)R2,∴(x,x)R1R2.
- Irreflexivity:
Supposing x,(x,x)R1R2,then (x,x)R1,(x,x)R2,contradiction.
- Symmetry:
x,y,(x,y)R1R2
(x,y)R1,(x,y)R2,since R1 and R2 are symmetric, (y,x)R1, (y,x)R2
∴(y,x)R1R2.
Asymmetry:
x,y,(x,y)R1R2
(x,y)R1,(x,y)R2,since R1 and R2 are asymmetric, (y,x)R1, (y,x)R2
∴(y,x)R1R2.
- Antisymmetry:
x,y,supposing (x,y)R1R2,then (x,y),(y,x)R1,and (x,y),(y,x)R2
since R1 and R2 are both antisymmetric,x=y.
- Transitivity:
x,y,z if (x,y)R1R2,(y,z)R1R2,then (x,y),(y,z)R1R2,
then (x,y),(y,z)R1,and (x,y),(y,z)R2,
since R1 and R2 are both transitive, (x,y)R1,and (x,z)R2
∴(x,z)R1R2
Union Keeping Properties of Relation:
- Reflexivity:
x,∵(x,x)R1,(x,x)R2,∴(x,x)R1R2
- Irreflexivity:
supposing that x, (x,x)R1R2, then (x,x) R1 or (x,x)R2,but R1 and R2 are irreflexive.
- Symmetry:
x,y,if(x,y)R1R2,then (x,y)R1 or (x,y) R2,
without losing generality,let (x,y)R1,since R1 is symmetric,
so,(y,x)R1R2
- Asymmetry:
counterexample:R1={(1,2) },R2={(2,1)}
then R1∪R2={(1,2),(2,1)}is symmetric
Antisymmetry:
counterexample: R1={(1,2) },R2={(2,1)}
then R1∪R2={(1,2),(2,1)}is symmetric
(1,2) ∈ R1∪R2 and (2,1) ∈ R1∪R2
But 1 != 2
- Transitivity:
counterexample:R1={(1,2),(2,3),(1,3)},R2={(2,3),(3,4),(2,4)},
R1∪R2={(1,2),(2,3),(1,3),(3,4),(2,4)} is not transitivity.
Inverse Keeping Properties of Relation:
- Reflexivity:
x,(x,x)R1 (x,x) R1-1
- Irreflexivity:
x,(х,х) R1 (x,x)R1-1
- Symmetry:
х,y,if(x,y) R1-1,then (y,x) R1,since R1 is symmetric,
(х,у)R1,∴(y,x) R1-1
- Asymmetry:
x,y,if (x,y) R1-1,then (y,x) R1,since R1 is asymmetric,
(x,y)R1,∴(y,x) R1-1
- Antisymmetry:
x,y,if (x,y)R1-1,(y,x)R1-1,then (yx)R1,(x,y)R1,
since R1 is antisymmetric,x=y.
- Transitivity:
x,y,z,if (x,y)R1-1,(y,z)R1-1,
then (y,x)R1,(z,y)R1,since R1 is transitive,(z,x) R1,∴(x,z)R1-1
Composition Keeping Properties of Relation:
- Reflexivity:
х,∵(x,x)R1 and (x,x)R2,∴(х,х)R2R1
- Irreflexivity:
counterexample:R1={(a,b)},R2={(b,a)},then R2R1={(a,a)}
- Symmetry:
counterexample:R1-{(c,b),(b,c)},R2={(c,d),(d,c)},then R2R1={(b,d)}
- Asymmetry:
counterexample:R1= {(a,b)},R2={(b,a)},then R2R1={(a,a)}
- Antisymmetry:
counterexample:R1={(a,b),(d,c)},R2={(b,d),(c,a)},then R2R1={(a,d),(d,a)}
- Transitivity:
counterexample:R1={(x,),(y,s)},R2={(t,y),(s,z)},
then R2R1={(x,y),(y,z)}