# 关系运算对于关系性质的保持性研究

R_1∩R_2
✔ ✔ ✔ ✔ ✔ ✔
R_1∪R_2
✔ ✔ ✔ ❌ ❌ ❌
〖R_1〗^(-1)
✔ ✔ ✔ ✔ ✔ ✔
R_1° R_2
✔ ❌ ❌ ❌ ❌ ❌

## Intersection Keeping Properties of Relation:

• Reflexivity:

x,∵(x,x)R1,(x,x)R2,∴(x,x)R1R2.

• Irreflexivity:

• Symmetry:

x,y，(x,y)R1R2
(x,y)R1,(x,y)R2,since R1 and R2 are symmetric, (y,x)R1, (y,x)R2
∴(y,x)R1R2.

Asymmetry:
x,y，(x,y)R1R2
(x,y)R1,(x,y)R2,since R1 and R2 are asymmetric, (y,x)R1, (y,x)R2
∴(y,x)R1R2.

• Antisymmetry:

x,y，supposing (x,y)R1R2,then (x,y)，(y,x)R1，and (x,y)，(y,x)R2
since R1 and R2 are both antisymmetric,x=y.

• Transitivity:

x,y,z if (x,y)R1R2,(y,z)R1R2,then (x,y),(y,z)R1R2,
then (x,y),(y,z)R1,and (x,y),(y,z)R2,
since R1 and R2 are both transitive, (x,y)R1,and (x,z)R2
∴(x,z)R1R2

## Union Keeping Properties of Relation：

• Reflexivity:

x，∵(x,x)R1，(x,x)R2，∴(x,x)R1R2

• Irreflexivity:

supposing that x, (x,x)R1R2, then (x,x) R1 or (x,x)R2，but R1 and R2 are irreflexive.

• Symmetry:

x,y,if(x,y)R1R2，then (x,y)R1 or (x,y) R2，
without losing generality，let (x,y)R1，since R1 is symmetric，
so，(y,x)R1R2

• Asymmetry:

counterexample：R1={(1,2) }，R2={(2,1)}
then R1∪R2={(1,2),(2,1)}is symmetric

Antisymmetry:
counterexample： R1={(1,2) }，R2={(2,1)}
then R1∪R2={(1,2),(2,1)}is symmetric
(1,2) ∈ R1∪R2 and (2,1) ∈ R1∪R2
But 1 != 2

• Transitivity:

counterexample：R1={(1,2),(2,3),(1,3)}，R2={(2,3),(3,4),(2,4)},
R1∪R2={(1,2),(2,3),(1,3),(3,4),(2,4)} is not transitivity.

## Inverse Keeping Properties of Relation：

• Reflexivity:

x，(x,x)R1 (x,x) R1-1

• Irreflexivity:

x，(х,х) R1 (x,x)R1-1

• Symmetry:

х,y，if(x,y) R1-1，then (y,x) R1，since R1 is symmetric，
(х,у)R1，∴(y,x) R1-1

• Asymmetry:

x,y，if (x,y) R1-1，then (y,x) R1，since R1 is asymmetric，
(x,y)R1，∴(y,x) R1-1

• Antisymmetry:

x,y，if (x,y)R1-1，(y,x)R1-1，then (yx)R1，(x,y)R1，
since R1 is antisymmetric，x=y.

• Transitivity:

x,y,z，if (x,y)R1-1，(y,z)R1-1,
then (y,x)R1，(z,y)R1，since R1 is transitive，(z,x) R1，∴(x,z)R1-1

## Composition Keeping Properties of Relation：

• Reflexivity:

х，∵(x,x)R1 and (x,x)R2，∴(х,х)R2R1

• Irreflexivity:

counterexample：R1={(a,b)}，R2={(b,a)}，then R2R1={(a,a)}

• Symmetry:

counterexample：R1-{(c,b),(b,c)}，R2={(c,d),(d,c)}，then R2R1={(b,d)}

• Asymmetry:

counterexample：R1= {(a,b)}，R2={(b,a)}，then R2R1={(a,a)}

• Antisymmetry:

counterexample：R1={(a,b),(d,c)}，R2={(b,d),(c,a)}，then R2R1={(a,d),(d,a)}

• Transitivity:

counterexample：R1={(x,),(y,s)}，R2={(t,y)，(s,z)}，
then R2R1={(x,y),(y,z)}

• 点赞
• 评论
• 分享
x

海报分享

扫一扫，分享海报

• 收藏
• 打赏

打赏

努力做小马

你的鼓励将是我创作的最大动力

C币 余额
2C币 4C币 6C币 10C币 20C币 50C币
• 举报
• 一键三连

点赞Mark关注该博主, 随时了解TA的最新博文

06-18 1685

10-17 9万+
04-26 1843
05-29 4万+
07-09 1万+
03-26 1万+
07-15 6万+
12-31 2122
08-19 842
11-25 489
11-08 1万+
04-30 3759
09-23 829
11-13 11万+
06-04 3万+
02-14 431
07-17 1505
06-01 110万+
©️2020 CSDN 皮肤主题: 1024 设计师:上身试试