- 博客(4)
- 收藏
- 关注
原创 用K近邻(KNN)机器学习算法进行股票走势预测-Python
接下来我们来进行KNN算法的实战操作。目标是,我们将利用KNN预测市场走向,并在此基础上制定交易策略。这里我们只简单用SPY的数据。标签或目标变量(target variable)是因变量。在这里,目标变量是识别SPY在下一个交易日收盘时是涨还是跌。如果明天的收益大于远期收益的中位数,我们将买入SPY,否则我们将卖出SPY。我们为目标变量的买入信号赋值+1,为卖出信号赋值-1。目标可以描述为:其中Q2rt1Q2rt1为SPY下一天收益的中位数(第二个四分位数)。
2023-07-09 18:27:54 3955 4
原创 二叉树模型与期权定价
二叉树法(Binomial Tree)是由Cox, Ross, 和 Robinstein在1979年首创的。二叉树法是一种在金融学中用于估算期权价格的方法,其中二叉树模型用于模拟股票价格的变化。在二叉树模型中,每个节点表示股票的价格,在模拟期间,二叉树模型允许股票在下一个时间点向上或向下移动特定的数量。每个节点都有两个子节点,分别表示价格向上或向下变化后的价格。给定初始股票价格S,我们让它以u和v倍上升或下降,从而产生新的价格uS和vS。如果有两次向上移动,股票价格为u2S;
2023-04-01 03:34:53 4655 2
原创 回报率与正态分布
正态分布是一种连续型概率分布,也被称为高斯分布或钟形曲线分布。它被广泛应用于统计学和自然科学中,如在财务分析、生物学、物理学、心理学和社会科学等领域中。正态分布的特点是具有单峰性,即它的概率密度函数具有一个峰值,而且峰值对称地位于均值的左右两侧。它还具有标准差和方差的特征,这些特征可以用来测量数据的分散程度。正态分布的形状可以通过均值和标准差来调整。fx∣μσ2σ2π1e−2σ2x−μ2其中,x是随机变量的取值,μ是均值,σ是标准差。
2023-04-01 03:13:37 499
原创 金融数据的预处理
任何数据分析的第一步都是解析原始数据,包括从源中提取数据,然后清洗和填充缺失的数据(如果有的话)。虽然数据有多种形式,但Python使用有用的包可以很容易地读取时间序列数据。这篇博客,我们将使用一些流行的python包检索和存储EOD数据和intraday数据。这些库旨在保持API的简单性,并使访问历史数据变得更容易。此外,我们还将了解如何从本地存储的传统数据源读取数据。
2023-03-22 08:09:20 943
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人