H.266/VVC相关技术学习笔记20:帧间预测技术中的MMVD技术(Merge mode with MVD)

今天介绍一下帧间预测技术中的MMVD技术(Merge mode with MVD),也称带有运动矢量差的融合技术,MMVD也属于基于Merge的技术中的一种,在解码端的语法元素中也属于Merge分支。不过我觉着按严格来讲,MMVD并不属于Merge系列,而更像是inter系列,因为MMVD是要传送MVD到解码端,就这一点来看,MMVD就已经不在Merge范围之内了。下面我来讲解一下MMVD的技术细节吧。

MMVD技术应用于帧间预测的Skip和Merge模式中,是一种运动矢量的特殊表达形式。在目前最新的VVC版本——VTM6.0中,MMVD技术的流程大致如下:
(1)首先重复利用普通Merge模式的Merge候选,在这些候选中选择位与列表的前两个候选作为初始的运动矢量基。
(2)对该初始MV进行扩展,主要在运动幅度和运动方向上进行扩展,来得到最终的扩展后的运动矢量,以形成新的运动矢量。

具体的详细步骤如下:
(1)首先利用VVC中普通Merge候选列表构建的过程,得到当前CU的候选列表,检查邻近块的顺序如图所示:
在这里插入图片描述需要注意的是,候选列表的长度为6,通过上述顺序的方法检查块的运动信息是否有效。如果有效,将该块的运动信息添加到候选列表中去;如果没有填满,则在候选列表中填充0矢量。

(2)然后,对于列表中前两个候选,最为初始的MV,以该候选MV在参考图像(分前向或者后向)中所指向的位置为起点,在上下左右四个方向上。进行8种步长的搜索,如下图所示:
在这里插入图片描述
其中步长和方向的索引具体如下表所示:
步长索引:
在这里插入图片描述
方向索引:
在这里插入图片描述

那么每个初始MV在每个方向上的每种步长都会形成一个新的MV,也即是细化过的MV(该扩展MV中包括三个信息:起始点、搜索方向、搜索步长),因此一个初始MV可以扩展出32个新的MV,两个初始MV总共可以扩展形成总共64个新MV,这些新的MV也会通过一次运动补偿得到当前CU的预测值。

  1. 在Merge情况下,将所有得到的64个新的预测值之间进行率失真代价的比较,最终选出最优的一种组合作为MMVD的最优的Merge候选。我们需要储存该MV的三个信息:①其初始MV在Merge列表中的索引;②移动的方向;③搜索的步长这三个语法元素。
  2. 在Skip的情况下同Merge情况一样。

那么MMVD在代码中具体是怎么实现的呢?

首先要对扩展的64种MV进行循环遍历,进行率失真代价比较,具体的代码段如下:我有详细的注释,以及起始点、搜索方向、搜索步长是如何表示的,我都有详细的注释

 if ( pu.cs->sps->getUseMMVD() )//使用MMVD模式,这里选出最优的MMVD的Merge候选(初始MV+搜索方向+搜索步长)
      {
        cu.mmvdSkip = true;
#if JVET_O0249_MERGE_SYNTAX
        pu.regularMergeFlag = true;//普通Merge列表依旧可用,因为初始的MV还是要从普通Merge中获取
#endif
        const int tempNum = (mergeCtx.numValidMergeCand > 1) ? MMVD_ADD_NUM : MMVD_ADD_NUM >> 1;
        //对MMVD候选循环遍历
        for (int mmvdMergeCand = 0; mmvdMergeCand < tempNum; mmvdMergeCand++)//循环64遍,前32种得到起始点1以及对应的8个步长
                                                                             //因为对于每种MV扩展都可以得到4*8种组合,因此两个起始点总共是64种组合
        {
          int baseIdx = mmvdMergeCand / MMVD_MAX_REFINE_NUM;//候选基MV(即初始MV)索引,要么0 要么1,(这里就是两个初始MV的起点,每个初始MV有32种4*8的步长+方向的组合)
          int refineStep = (mmvdMergeCand - (baseIdx * MMVD_MAX_REFINE_NUM)) / 4;//表示8种步长
          if (refineStep >= m_pcEncCfg->getMmvdDisNum())
            continue;
          //设置MMVD候选的信息,得到每个扩展MV具体的搜索初始点以及每个方向以及对应的步长
          mergeCtx.setMmvdMergeCandiInfo(pu, mmvdMergeCand);

          PU::spanMotionInfo(pu, mergeCtx);
          pu.mvRefine = true;
          distParam.cur = singleMergeTempBuffer->Y();
          pu.mmvdEncOptMode = (refineStep > 2 ? 2 : 1);
          CHECK(!pu.mmvdMergeFlag, "MMVD merge should be set");
          // Don't do chroma MC here

          //MMVD的Merge候选运动补偿计算预测值
          m_pcInterSearch->motionCompensation(pu, *singleMergeTempBuffer, REF_PIC_LIST_X, true, false);
          pu.mmvdEncOptMode = 0;
          pu.mvRefine = false;
          Distortion uiSad = distParam.distFunc(distParam);//失真函数

          m_CABACEstimator->getCtx() = ctxStart;
          uint64_t fracBits = m_pcInterSearch->xCalcPuMeBits(pu);//计算码率
          double cost = (double)uiSad + (double)fracBits * sqrtLambdaForFirstPassIntra; //计算RDcost
          insertPos = -1;

          //更新候选列表
          updateCandList(ModeInfo(mmvdMergeCand, false, true, false), cost, RdModeList, candCostList, uiNumMrgSATDCand, &insertPos);
          if (insertPos != -1)
          {
            for (int i = int(RdModeList.size()) - 1; i > insertPos; i--)
            {
              swap(acMergeTempBuffer[i - 1], acMergeTempBuffer[i]);
            }
            swap(singleMergeTempBuffer, acMergeTempBuffer[insertPos]);//将代价更小的那个MV插入到Merge列表中
          }
        }
      }

当然,这里关于MMVD新的扩展MV的生成有一个专门的函数,setMmvdMergeCandiInfo()函数中设置MMVD候选的信息,得到每个扩展MV具体的搜索初始点以及每个方向以及对应的步长。该函数代码具体如下,想要看的细一点的同学可以研究一下我加的注释

//设置MMVD的候选信息,candIdx就是32种组合中的一种模式的索引
void MergeCtx::setMmvdMergeCandiInfo(PredictionUnit& pu, int candIdx)
{
  const Slice &slice = *pu.cs->slice;
  const int mvShift = MV_FRACTIONAL_BITS_DIFF;

  //参考MVD的候选,2,4,8,16,32,64,128,256
  //这里面实际就是8种步长的偏置量
  const int refMvdCands[8] = { 1 << mvShift , 2 << mvShift , 4 << mvShift , 8 << mvShift , 16 << mvShift , 32 << mvShift,  64 << mvShift , 128 << mvShift };
  int fPosGroup = 0;
  int fPosBaseIdx = 0;//起始MV的索引
  int fPosStep = 0;//搜索步长
  int tempIdx = 0;
  int fPosPosition = 0;//搜索方向
  Mv tempMv[2];//里面存储前向MV和后向MV

  tempIdx = candIdx;//组合新的MV索引
  fPosGroup = tempIdx / (MMVD_BASE_MV_NUM * MMVD_MAX_REFINE_NUM);//整个候选列表的初始位置0
  tempIdx = tempIdx - fPosGroup * (MMVD_BASE_MV_NUM * MMVD_MAX_REFINE_NUM); //0-63,传进来的扩展MV的索引
  fPosBaseIdx = tempIdx / MMVD_MAX_REFINE_NUM;//第一个初始向量的索引0或者第二个初始向量的索引1
  tempIdx = tempIdx - fPosBaseIdx * (MMVD_MAX_REFINE_NUM);//0-31(各自初始向量的32种扩展MV)
  fPosStep = tempIdx / 4; //每个初始MV对应的8种步长的索引
  fPosPosition = tempIdx - fPosStep * (4);//该值总为0-3,也就是对应的四个方向的索引
  int offset = refMvdCands[fPosStep];//8种步长对应的偏置
  if ( pu.cu->slice->getDisFracMMVD() )
  {
    offset <<= 2;
  }
  const int refList0 = mmvdBaseMv[fPosBaseIdx][0].refIdx;//每个初始MV的前向参考列表
  const int refList1 = mmvdBaseMv[fPosBaseIdx][1].refIdx;//每个初始MV的后向参考列表

  if ((refList0 != -1) && (refList1 != -1))//双向的参考列表存在
  {
    const int poc0 = slice.getRefPOC(REF_PIC_LIST_0, refList0); //前向参考帧的POC
    const int poc1 = slice.getRefPOC(REF_PIC_LIST_1, refList1);//后向参考帧的POC
    const int currPoc = slice.getPOC();//当前帧的POC

    //每个MV的结构体里包含其搜索方向,以及搜索步长,然后赋值给tempMv数组
    if (fPosPosition == 0)
    {
      tempMv[0] = Mv(offset, 0);//右
    }
    else if (fPosPosition == 1)
    {
      tempMv[0] = Mv(-offset, 0);//左
    }
    else if (fPosPosition == 2)
    {
      tempMv[0] = Mv(0, offset);//上
    }
    else
    {
      tempMv[0] = Mv(0, -offset);//下
    }
    if ((poc0 - currPoc) == (poc1 - currPoc))//前后向参考帧属于同一帧
    {
      tempMv[1] = tempMv[0];//双向的MVD是一样的
    }
    else if (abs(poc1 - currPoc) > abs(poc0 - currPoc))//后向参考帧POC大于前向参考帧的POC
    {
      const int scale = PU::getDistScaleFactor(currPoc, poc0, currPoc, poc1);
      tempMv[1] = tempMv[0];
      const bool isL0RefLongTerm = slice.getRefPic(REF_PIC_LIST_0, refList0)->longTerm;
      const bool isL1RefLongTerm = slice.getRefPic(REF_PIC_LIST_1, refList1)->longTerm;
      if (isL0RefLongTerm || isL1RefLongTerm)//有其中一个是长期参考帧
      {
        if ((poc1 - currPoc)*(poc0 - currPoc) > 0)
        {
          tempMv[0] = tempMv[1];
        }
        else
        {
          tempMv[0].set(-1 * tempMv[1].getHor(), -1 * tempMv[1].getVer());
        }
      }
      else//都不是长期参考帧
      tempMv[0] = tempMv[1].scaleMv(scale);
    }
    else
    {
      const int scale = PU::getDistScaleFactor(currPoc, poc1, currPoc, poc0);
      const bool isL0RefLongTerm = slice.getRefPic(REF_PIC_LIST_0, refList0)->longTerm;
      const bool isL1RefLongTerm = slice.getRefPic(REF_PIC_LIST_1, refList1)->longTerm;
      if (isL0RefLongTerm || isL1RefLongTerm)
      {
        if ((poc1 - currPoc)*(poc0 - currPoc) > 0)//若前后向参考帧都来自当前帧的时域的同一侧,后向MMVDoffet与前向的相等
        {
          tempMv[1] = tempMv[0];
        }
        else//若不来自同一侧,前向和后向的MMVDOffset相对称
        {
          tempMv[1].set(-1 * tempMv[0].getHor(), -1 * tempMv[0].getVer());
        }
      }
      else
      tempMv[1] = tempMv[0].scaleMv(scale);
    }

    pu.interDir = 3;//双向列表的DIr设置为3

                    //这里为每个选中的MV选择起始MV然后加上步长和方向
    pu.mv[REF_PIC_LIST_0] = mmvdBaseMv[fPosBaseIdx][0].mv + tempMv[0];//MMVD的前向MV
    pu.refIdx[REF_PIC_LIST_0] = refList0;
    pu.mv[REF_PIC_LIST_1] = mmvdBaseMv[fPosBaseIdx][1].mv + tempMv[1];//MMVD的后向MV
    pu.refIdx[REF_PIC_LIST_1] = refList1;
  }
  else if (refList0 != -1)//如果只有前向列表存在
  {
    if (fPosPosition == 0)//右
    {
      tempMv[0] = Mv(offset, 0);
    }
    else if (fPosPosition == 1)//左
    {
      tempMv[0] = Mv(-offset, 0);
    }
    else if (fPosPosition == 2)//上
    {
      tempMv[0] = Mv(0, offset);
    }
    else//下
    {
      tempMv[0] = Mv(0, -offset);
    }
    pu.interDir = 1;//前向列表的DIr设置为1
    pu.mv[REF_PIC_LIST_0] = mmvdBaseMv[fPosBaseIdx][0].mv + tempMv[0];
    pu.refIdx[REF_PIC_LIST_0] = refList0;
    pu.mv[REF_PIC_LIST_1] = Mv(0, 0);
    pu.refIdx[REF_PIC_LIST_1] = -1;
  }
  else if (refList1 != -1)
  {
    if (fPosPosition == 0)
    {
      tempMv[1] = Mv(offset, 0);
    }
    else if (fPosPosition == 1)
    {
      tempMv[1] = Mv(-offset, 0);
    }
    else if (fPosPosition == 2)
    {
      tempMv[1] = Mv(0, offset);
    }
    else
    {
      tempMv[1] = Mv(0, -offset);
    }
    pu.interDir = 2;//后向列表的DIr设置为2
    pu.mv[REF_PIC_LIST_0] = Mv(0, 0);
    pu.refIdx[REF_PIC_LIST_0] = -1;
    pu.mv[REF_PIC_LIST_1] = mmvdBaseMv[fPosBaseIdx][1].mv + tempMv[1];
    pu.refIdx[REF_PIC_LIST_1] = refList1;
  }

  pu.mmvdMergeFlag = true;
  pu.mmvdMergeIdx = candIdx;
  pu.mergeFlag = true;
#if JVET_O0249_MERGE_SYNTAX
  pu.regularMergeFlag = true;
#else
  pu.regularMergeFlag = false;
#endif
  pu.mergeIdx = candIdx;
  pu.mergeType = MRG_TYPE_DEFAULT_N;
  pu.mvd[REF_PIC_LIST_0] = Mv();
  pu.mvd[REF_PIC_LIST_1] = Mv();
  pu.mvpIdx[REF_PIC_LIST_0] = NOT_VALID;
  pu.mvpIdx[REF_PIC_LIST_1] = NOT_VALID;
  pu.mvpNum[REF_PIC_LIST_0] = NOT_VALID;
  pu.mvpNum[REF_PIC_LIST_1] = NOT_VALID;
#if JVET_O0057_ALTHPELIF
  pu.cu->imv = mmvdUseAltHpelIf[fPosBaseIdx] ? IMV_HPEL : 0;//MV使用半像素精度
#endif

  pu.cu->GBiIdx = (interDirNeighbours[fPosBaseIdx] == 3) ? GBiIdx[fPosBaseIdx] : GBI_DEFAULT;//双向参考索引

  for (int refList = 0; refList < 2; refList++)
  {
    if (pu.refIdx[refList] >= 0)
    {
      pu.mv[refList].clipToStorageBitDepth();
    }
  }


  PU::restrictBiPredMergeCandsOne(pu);
}

最后,关于MMVD熵编码的部分我在后续打算专门写一篇博客讲一下,顺便将所有Merge的熵编码部分都放在一起讲,比较统一也方便大家理解~

发布了89 篇原创文章 · 获赞 69 · 访问量 9万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 精致技术 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览