使用Scikit-learn构建带有样本权重的Lasso回归模型
Lasso回归是一种用于特征选择和稀疏性建模的线性回归方法。它通过对目标函数添加L1正则化项来鼓励模型系数的稀疏性。在Scikit-learn库中,我们可以使用sklearn.linear_model.Lasso
类来构建Lasso回归模型。本文将介绍如何使用Scikit-learn构建Lasso回归模型,并指定样本权重。
首先,我们需要导入所需的库和模块:
from sklearn import linear_model
import numpy as np
接下来,我们准备一些示例数据来演示Lasso回归模型的构建和样本权重的指定。假设我们有一个包含100个样本和5个特征的数据集,以及一个包含100个样本的权重向量。
# 示例数据
X = np.r