【人工智能-中级】模型解释性与可视化:从特征重要度到可解释AI工具箱

模型解释性与可视化:从特征重要度到可解释AI工具箱

在机器学习和深度学习模型日益复杂化的今天,模型的性能往往伴随着其解释性的降低。为了在实际应用中建立信任、满足法规要求以及提升模型的透明度,模型解释性(Model Interpretability)成为了一个关键研究领域。本文将深入探讨模型解释性的基本概念、特征重要度方法、可视化技术以及主流的可解释AI工具箱,旨在为读者提供系统而实用的知识体系,助力在各类应用场景中有效应用可解释AI技术。

目录

  1. 引言
  2. 模型解释性的基本概念
    • 解释性的必要性
    • 解释性的类型:全局与局部
  3. 特征重要度方法
    • 置换重要度(Permutation Importance)
    • SHAP值(SHapley Additive exPlanations)
    • LIME(Local Interpretable Model-agnostic Explanations)
    • 集成梯度(Integrated Gradients)
    • 其他方法
  4. 可视化技术
    • 部分依赖图(Partial Dependence Plots)
    • 个体条件期望(Indivi
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

若北辰

谢谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值