模型解释性与可视化:从特征重要度到可解释AI工具箱
在机器学习和深度学习模型日益复杂化的今天,模型的性能往往伴随着其解释性的降低。为了在实际应用中建立信任、满足法规要求以及提升模型的透明度,模型解释性(Model Interpretability)成为了一个关键研究领域。本文将深入探讨模型解释性的基本概念、特征重要度方法、可视化技术以及主流的可解释AI工具箱,旨在为读者提供系统而实用的知识体系,助力在各类应用场景中有效应用可解释AI技术。
目录
- 引言
- 模型解释性的基本概念
- 解释性的必要性
- 解释性的类型:全局与局部
- 特征重要度方法
- 置换重要度(Permutation Importance)
- SHAP值(SHapley Additive exPlanations)
- LIME(Local Interpretable Model-agnostic Explanations)
- 集成梯度(Integrated Gradients)
- 其他方法
- 可视化技术
- 部分依赖图(Partial Dependence Plots)
- 个体条件期望(Indivi