BZOJ 4174 tty的求助 莫比乌斯反演

原创 2015年07月09日 19:13:24

题目大意:求Nn=1Mm=1m1k=0nk+xm mod 998244353

假设nm都已经确定了,现在要求这坨玩应:
m1k=0nk+xm
=m1k=0(nk%m+xm+nknk%mm)
=m1k=0(nk%m+xm+nkmnk%mm)

我们一项一项考虑

d=gcd(n,m),那么有

m1k=0nk%m+xm
=dmd1k=0kd+xm
=d(mdxx%mm+md1k=0kd+x%mm)
=d(mdxx%mm+md1k=0[kd+x%mm])
=d(xx%md+x%md)
=dxd

m1k=0nkm=nmm(m1)2=nmn2

m1k=0nk%mm=dmd1k=0kdm=d2m(md1)md2=md2

故答案为
Nn=1Mm=1(dxd+nmn2md2)
=12Nn=1Mm=1(2dxd+d+nmnm)
=12(S(N)S(M)S(N)mS(M)n+min(N,M)d=1(d+2dxd)min(Nd,Md)k=1μ(k)NdkMdk)

其中S(n)=n(n+1)2

然后O(nlogn)枚举dk即可

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define M 500500
#define MOD 998244353
using namespace std;
int n,m,x;
long long ans;
int mu[M];
int prime[M],tot;
bool not_prime[M];
void Linear_Shaker()
{
    int i,j;
    mu[1]=1;
    for(i=2;i<=500000;i++)
    {
        if(!not_prime[i])
        {
            prime[++tot]=i;
            mu[i]=MOD-1;
        }
        for(j=1;prime[j]*i<=500000;j++)
        {
            not_prime[prime[j]*i]=true;
            if(i%prime[j]==0)
            {
                mu[prime[j]*i]=0;
                break;
            }
            mu[prime[j]*i]=(MOD-mu[i])%MOD;
        }
    }
}
long long Sum(long long n)
{
    return (n*(n+1)>>1)%MOD;
}
int main()
{
    int i,j;
    cin>>n>>m>>x;
    Linear_Shaker();
    ans=((Sum(n)*Sum(m)-Sum(n)*m-Sum(m)*n)%MOD+MOD)%MOD;
    if(n>m) swap(n,m);
    for(i=1;i<=n;i++)
    {
        long long temp=i+x/i*i*2;
        for(j=1;j*i<=n;j++)
            (ans+=temp*mu[j]%MOD*(n/i/j)%MOD*(m/i/j)%MOD)%=MOD;
    }
    cout<<(ans*(MOD+1>>1)%MOD)<<endl;
    return 0;
}

利用XSL对XML数据进行加密和大小写转换

利用XSL对XML数据进行加密和大小写转换XML数据一个最普通的问题就是数据的大小写,在进行数据转换时常常产生令人头疼的麻烦。下面就是一个解决的办法。假设你有一些数据要发送到另外一个系统,它也识别XM...
  • net_lover
  • net_lover
  • 2002-10-10 15:24:00
  • 3180

bzoj 3601: 一个人的数论 高斯消元&莫比乌斯反演

AC代码如下: #include #include #include #define ll long long #define mod 1000000007 #define inv(x) ksm(x,...
  • lych_cys
  • lych_cys
  • 2016-04-11 15:39:22
  • 743

BZOJ 4176 [莫比乌斯反演][杜教筛]

DescriptionDescription求∑i=1n∑j=1nd(ij)\sum_{i = 1}^n\sum_{j = 1}^nd(ij)通过陈老师r老师等式可以的得到该式子就等于∑i=1n∑j=...
  • Vectorxj
  • Vectorxj
  • 2017-06-03 19:33:24
  • 362

BZOJ 3930 CQOI2015 选数 莫比乌斯反演

题目见 http://pan.baidu.com/s/1o6zajc2 此外不知道H-L #include #include #include #include #includ...
  • PoPoQQQ
  • PoPoQQQ
  • 2015-04-07 11:16:55
  • 19123

BZOJ 4176 Lucas的数论 莫比乌斯反演

题目大意:给定n(n≤109)n(n\leq10^9),求∑ni=1∑nj=1d(ij)\sum_{i=1}^n\sum_{j=1}^nd(ij)推错式子害死人。。。 由d|ijd|ij等价于dgc...
  • PoPoQQQ
  • PoPoQQQ
  • 2015-07-10 18:20:57
  • 3041

BZOJ 2818(莫比乌斯反演)

最近刚看莫比乌斯反演  数学不好是硬伤啊 不过总算跑出来了 第一种是没优化的跑这题 #include #include using namespace std; const int maxn ...
  • Below_Crusder
  • Below_Crusder
  • 2016-05-02 19:43:20
  • 316

[BZOJ3930][CQOI2015]选数(莫比乌斯反演+杜教筛)

题目描述传送门题解我tm从头到尾竟然都记了一个错误的反演公式… 令f(n)f(n)表示选出gcd为n的有多少种方案 令F(n)F(n)表示选出gcd为n的倍数的有多少种方案 也就是F(n)=∑n...
  • Clove_unique
  • Clove_unique
  • 2017-03-28 11:11:58
  • 517

[BZOJ 1101] POI 2007 Zap · 莫比乌斯 & 分块 超详细题解

初学莫比乌斯反演,翻了大量的题解才搞懂这题,所以决定自己写一个最详细的题解,虽然有些繁琐,但是每一步推导都十分详细。神犇就不要嘲讽我了2333 首先,我们定义 题目即要求 由于d是给定的,所以另 ...
  • ycdfhhc
  • ycdfhhc
  • 2016-02-05 11:12:28
  • 1109

[期望 DP || 高斯消元 KMP] BZOJ 3213 [Zjoi2013]抛硬币

这个其实也不复杂  先kmp 可以发现 每个点的状态会从转移到 i+1 和 next[i] 不妨设为f 然后列出方程 直接就可以上高斯消元 大概80? 这个东西其实可以DP E(i+1)=(E...
  • u014609452
  • u014609452
  • 2017-01-19 06:55:33
  • 694

[莫比乌斯反演 高斯消元 数学技巧] BZOJ 3601 一个人的数论

推导过程直接拉过来不是很好  看这位神犇的吧 http://www.cnblogs.com/jianglangcaijin/p/4033399.html #include #incl...
  • u014609452
  • u014609452
  • 2016-12-26 18:43:19
  • 293
收藏助手
不良信息举报
您举报文章:BZOJ 4174 tty的求助 莫比乌斯反演
举报原因:
原因补充:

(最多只允许输入30个字)