机器学习 | 基于机器学习的推荐系统客户购买可能性预测分析

在上周我写了一篇“基于机器学习的银行电话营销客户购买可能性预测分析”,那是作为对客户购买可能性预测分析的第一次验证案例的尝试。今天是基于机器学习的客户购买可能性预测分析的第二次验证案例:推荐系统。

推荐系统

基于热度推荐:由专家或者一定时期产品销售情况或者主推产品,制作一个排行榜,在没有用户数据的情况下根据排行榜推荐

基于用户特征推荐:通过历史数据,由算法(机器学习)根据用户特征进行推荐,在用户数据能够填写一些基本数据的情况下

基于知识推荐:通过用户要求,比如果需要高收益,需要低风险的产品,在数据库对产品进行筛选,然后推荐

基于内容推荐:通过用户已经购买的产品,推荐内容相似的物品,这里的内容相似是由专业人员提供

协同过滤推荐:通过算法直接计算物品相识度,注意这里的物品相似度不是2个物品内容,而是有购买情况来确定的,比如说购买A(手机)的用户,大多数都购买了B(手机套),算法计算出A与B是相似的

一些机器学习推荐:通过以一些机器学习算法,比如说FM(因式分解机ÿ

  • 0
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Pokemogo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值