在上周我写了一篇“基于机器学习的银行电话营销客户购买可能性预测分析”,那是作为对客户购买可能性预测分析的第一次验证案例的尝试。今天是基于机器学习的客户购买可能性预测分析的第二次验证案例:推荐系统。
推荐系统
基于热度推荐:由专家或者一定时期产品销售情况或者主推产品,制作一个排行榜,在没有用户数据的情况下根据排行榜推荐
基于用户特征推荐:通过历史数据,由算法(机器学习)根据用户特征进行推荐,在用户数据能够填写一些基本数据的情况下
基于知识推荐:通过用户要求,比如果需要高收益,需要低风险的产品,在数据库对产品进行筛选,然后推荐
基于内容推荐:通过用户已经购买的产品,推荐内容相似的物品,这里的内容相似是由专业人员提供
协同过滤推荐:通过算法直接计算物品相识度,注意这里的物品相似度不是2个物品内容,而是有购买情况来确定的,比如说购买A(手机)的用户,大多数都购买了B(手机套),算法计算出A与B是相似的
一些机器学习推荐:通过以一些机器学习算法,比如说FM(因式分解机ÿ