题目:
给定一个字符串 (s) 和一个字符模式 (p) ,实现一个支持 '?' 和 '*' 的通配符匹配。
'?' 可以匹配任何单个字符。
'*' 可以匹配任意字符串(包括空字符串)。
两个字符串完全匹配才算匹配成功。说明:
s 可能为空,且只包含从 a-z 的小写字母。
p 可能为空,且只包含从 a-z 的小写字母,以及字符 ? 和 *。来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/wildcard-matching
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
网友答案:
思路: 动态规划
dp[i][j]表示s到i位置,p到j位置是否匹配!
初始化:
dp[0][0]:什么都没有,所以为true
第一行dp[0][j],换句话说,s为空,与p匹配,所以只要p开始为*才为true
第一列dp[i][0],当然全部为False
动态方程:
如果(s[i] == p[j] || p[j] == "?") && dp[i-1][j-1] ,有dp[i][j] = true
如果p[j] == "*" && (dp[i-1][j] = true || dp[i][j-1] = true) 有dp[i][j] = true
note:
dp[i][j-1],表示*代表是空字符,例如ab,ab*
dp[i-1][j],表示*代表非空任何字符,例如abcd,ab*
class Solution {
public:
bool isMatch(string s, string p) {
int m = s.length();
int n = p.length();
vector<vector<bool>> dp(m + 1, vector<bool>(n + 1, false));
dp[0][0] = true;
for (int j = 1; j <= n; j++) {
if(p[j - 1] == '*') dp[0][j] = true;
else break;
}
for (int i = 1; i <= m; ++i) {
for (int j = 1; j <= n; ++j) {
if (p[j-1] == '*') {
dp[i][j] = dp[i][j-1] || dp[i-1][j];
} else if (p[j-1] == '?' || s[i-1] == p[j-1]) {
dp[i][j] = dp[i-1][j-1];
} else {
dp[i][j] = false;
}
}
}
return dp[m][n];
}
};