感谢各位大佬支持,留个赞吧
目录
一、整数在内存中的存储
(一)整数的2进制表示方法有三种,即原码、反码和补码 三种表示方法均有符号位和数值位两部分,符号位都是用0表示“正”,用1表示“负”,而数值位最高位的⼀位是被当做符号位,剩余的都是数值位
正整数的原、反、补码都相同。负整数的三种表示方法各不相同。
下面库库以-10为例
原码 | 10000000 00000000 00000000 00001010 |
反码 | 11111111 11111111 11111111 11110101(符号位不变,其他位依次按位取反) |
补码 | 11111111 11111111 11111111 11110110 (反码+1得到补码) |
(二)对于整形来说:数据存放内存中其实存放的是补码。
原因:在计算机系统中,数值⼀律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统⼀处理; 同时,加法和减法也可以统⼀处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路。
二、大小端字节序和字节序判断
(一)大家可以尝试用自己的编译器监视一下内存的存储方式,这里库库使用的是VS2022
对以下代码进行调试
#include <stdio.h>
int main()
{
int a = 0x11223344;
return 0;
}
在调试的时候打开内存窗口输入&a,可以看到在a中的 0x11223344 这个数字是按照字节为单位,正着存储的。这是大端字节序存储。
大端(存储)模式: 是指数据的低位字节内容保存在内存的高地址处,而数据的高位字节内容,保存在内存的低地址处。小端(存储)模式: 是指数据的低位字节内容保存在内存的低地址处,而数据的高位字节内容,保存在内存的高地址处。
思路:int a = 0;//0x00 00 00 01我们拿出它的第一个字节,如果第一个字节是0那我们可以判断机器是大端存储,第一个字节是1则是小端存储。
#include <stdio.h>
int check_sys()
{
int a = 1;
return *(char*)&a;
}
int main()
{
int ret = check_sys();
if(ret == 1)
{
printf("小端\n");
}
else
{
printf("大端\n");
}
return 0;
}
为什么不返回一个(char)a而是的返回*(char*)&a呢
我们这个代码是把a的地址取出来,强制类型转换为char*的指针类型,这样我们一次只指向1个字节的内容了,不会发生截断,还能只取我们第一个字节的内容。而如果采用直接把a强制类型转换为char那不管是大小端,我们取到的还是1,如果让a = -1,这样写我们得到的是发生截断的值,返回的二进制内容是11111111,换成16进制就是ff
三、练习,整型提升
一、程序会输出什么?
#include <stdio.h>
int main()
{
char a= -1;
signed char b=-1;
unsigned char c=-1;
printf("a=%d,b=%d,c=%d",a,b,c);
return 0;
}
我们先把-1的原反补码写出来,因为是整数我们先按整形写,4字节,32个bit位
原码 | 10000000 00000000 00000000 00000001 |
反码 | 11111111 11111111 11111111 11111110 |
补码 | 11111111 11111111 11111111 11111111 |
char 和signed char一样的,在内存中发生截断后的补码为11111111,取反加一还是会输出-1,
但是unsigned char最高位不是符号位11111111被认为是正数,原反补相同,打印出255
二、程序会输出什么
#include <stdio.h>
int main()
{
char a = -128;
printf("%u\n",a);
return 0;
}
原码 | 10000000 00000000 00000000 10000000 |
反码 | 11111111 11111111 11111111 01111111 |
补码 | 11111111 11111111 11111111 10000000 (8个bit位存入a) |
- %u是以十进制的形式打印无符号数
- 打印时发生整型提升,提升时,补最高位的数字,这时我们打印的二进制数补码变为:
- 11111111 11111111 11111111 10000000,打印无符号的原反补相同
- 转换成10进制就是4,294,967,168
三、
#include <stdio.h>
int main()
{
char a = 128;
printf("%u\n",a);
return 0;
}
原码 | 00000000 00000000 00000000 10000000 |
反码 | 01111111 11111111 11111111 01111111 |
补码 | 01111111 11111111 11111111 10000000 整型提升 |
和上面一样,打印出4,294,967,168
四、为什么输出255呢?
#include <stdio.h>
int main()
{
char a[1000];
int i;
for(i=0; i<1000; i++)
{
a[i] = -1-i;
}
printf("%d",strlen(a));
return 0;
}
- 大家应该知道char的范围是-128~127
- 这段代码a数组中被存的是:-1 -2 -3......(-1-127)-128 (-1-(-128))127 126 125......5 4 3 2 1 0 -1 -2......-128 127 126......5 4 3 2 1 0........
- strlen求字符串长度找的是\0,\0的ASCII码值是0,其实找的就是0!!
- 所以当我们第一次存到0时的位置就是长度结束的位置,从-1到-128是128个数字,从127到1是127个数字,加起来一共255,所以输出255
五、请在x86环境下运行以下代码
#include <stdio.h>
int main()
{
int a[4] = { 1, 2, 3, 4 };
int *ptr1 = (int *)(&a + 1);
int *ptr2 = (int *)((int)a + 1);
printf("%x,%x", ptr1[-1], *ptr2);
return 0;
}
- %x是以16进制打印,%#x,就表示在输出时是以带0x前缀十六进制形式输出后面的对应参数。
- &a代表一整个数组+1相当于跳过一整个数组的大小
- (int)a表示将首元素地址强制类型转换为int型,+1就是简单的整数的加法运算,再2转换成int*类型输出
我们假设当前是小端环境:
ptr[-1] =>*(ptr-1) 向后偏移一个int的大小,所以输出4
假设a指向的首元素地址是0x010
转换成int类型就代表了16,加一代表17,把17强制类型转换成int*和原来的地址相差1啊,这不就相当于往后走了一个字节嘛!
所以*ptr2输出的是02 00 00 00,ptr[-1]输出的是00 00 00 04 ,也就是4,2000000
四、浮点数的存储
先来个逆天的,看不懂的老铁不用急,下面有讲解
#include <stdio.h>
int main()
{
int n = 9;
float *pFloat = (float *)&n;
printf("n的值为:%d\n",n);
printf("*pFloat的值为:%f\n",*pFloat);
*pFloat = 9.0;
printf("num的值为:%d\n",n);
printf("*pFloat的值为:%f\n",*pFloat);
return 0;
}
V = (−1)^S ∗ M ∗ 2^E
- (−1)^S 表示符号位,当S=0,V为正数;当S=1,V为负数
- M表示有效数字,M是大于等于1,小于2的
- 2 ^E 表示指数位
IEEE 754规定:
- 对于32位的浮点数,最高的1位存储符号位S,接着的8位存储指数E,剩下的23位存储有效数字M
- 对于64位的浮点数,最高的1位存储符号位S,接着的11位存储指数E,剩下的52位存储有效数字M
double的E是11位,M为52位
1.M前面说过, 1 ≤ M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中 xxxxxx 表示小数部分。IEEE 754 规定,在计算机内部保存M时,默认这个数的 第⼀位总是1 ,因此可以被 舍去 ,只保存后面的 xxxxxx部分。比如保存1.01的时候,只保存01,等到读取的时候,再把第⼀位的1加上去。 这样做的目的,是节省1位有效数字 。以32位浮点数为例,留给M只有23位,将第⼀位的1舍去以后,等于可以保存24位有效数字。
2.至于指数E,情况就比较复杂首先,E为⼀个 无符号整数 (unsigned int)这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但是,我们知道, 科学计数法中的E是可以出现负数 的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。
1.E不全为0或不全为1这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效 数字M前加上第⼀位的1。比如:0.5 的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为1.0*2^(-1),其 阶码为-1+127(中间值)=126,表示为01111110,而尾数1.0去掉整数部分为0,补齐0到23位 00000000000000000000000,则其⼆进制表示形式为:
0 01111110 00000000000000000000000
|
2.E全为0这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,有效数字M不再加上第⼀位的1,而是还 原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于0的很小的数字
0 00000000 00100000000000000000000
|
3.E全为1
这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s)
0 11111111 00010000000000000000000
|
先看第1环节,为什么 9 还原成浮点数,就成了 0.000000 ?9以整型的形式存储在内存中,得到如下⼆进制序列:
0000 0000 0000 0000 0000 0000 0000 1001 |
- 首先,将 9 的⼆进制序列按照浮点数的形式拆分,得到第⼀位符号位s=0,后面8位的指数E=00000000 ,
- 最后23位的有效数字M=000 0000 0000 0000 0000 1001。
- 由于指数E全为0,所以符合E为全0的情况。因此,浮点数V就写成:
- V=(-1)^0 × 0.00000000000000000001001×2^(-126)=1.001×2^(-146)
- 显然,V是⼀个很小的接近于0的正数,所以用十进制小数表示就是0.000000。
再看第2环节,浮点数9.0,为什么整数打印是 1091567616
- 首先,浮点数9.0 等于⼆进制的1001.0,即换算成科学计数法是:1.001×2^3
- 所以: 9.0 = (−1) ^0∗ (1.001) ∗ 2^3
- 那么,第⼀位的符号位S=0,有效数字M等于001后⾯再加20个0,凑满23位,指数E等于3+127=130, ,即10000010
- 所以,写成⼆进制形式,应该是S+E+M,即
0 10000010 001 0000 0000 0000 0000 0
|