数据在内存中的存储

本文详细介绍了整数在内存中的存储方式,包括原码、反码和补码的区别,以及大端和小端字节序的概念及其判断方法。此外,文章还探讨了浮点数的存储原理,特别是IEEE754标准,并通过示例解析了整数与浮点数在内存中的表示差异。
摘要由CSDN通过智能技术生成

感谢各位大佬支持,留个赞吧

目录

感谢各位大佬支持,留个赞吧

​编辑

一、整数在内存中的存储

二、大小端字节序和字节序判断

三、练习,整型提升

四、浮点数的存储


一、整数在内存中的存储


(一)整数的2进制表示方法有三种,即原码、反码和补码 三种表示方法均有符号位和数值位两部分,符号位都是用0表示“正”,用1表示“负”,而数值位最高位的⼀位是被当做符号位,剩余的都是数值位

正整数的原、反、补码都相同。
负整数的三种表示方法各不相同。
原码:直接将数值按照正负数的形式翻译成⼆进制得到的就是原码。
反码:将原码的符号位不变,其他位依次按位取反就可以得到反码。
补码:反码+1就得到补码。
划重点:要知道,从原码计算补码和从补码计算原码的计算过程是相同的
下面库库以-10为例
原码10000000 00000000 00000000 00001010
反码11111111 11111111 11111111 11110101(符号位不变,其他位依次按位取反
补码11111111 11111111 11111111 11110110 (反码+1得到补码

(二)对于整形来说:数据存放内存中其实存放的是补码。

原因:在计算机系统中,数值⼀律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统⼀处理; 同时,加法和减法也可以统⼀处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路。

二、大小端字节序和字节序判断

(一)大家可以尝试用自己的编译器监视一下内存的存储方式,这里库库使用的是VS2022

对以下代码进行调试

#include <stdio.h>
int main()
{
	int a = 0x11223344;
	return 0;
}

  在调试的时候打开内存窗口输入&a,可以看到在a中的 0x11223344 这个数字是按照字节为单位,正着存储的。这是大端字节序存储。

(二)什么是大小端
  其实超过一个字节的数据在内存中存储的时候,就有存储顺序的问题,按照不同的存储顺序,我们分 为 大端字节序存储和小端字节序存储,下面是具体的概念:
大端(存储)模式: 是指数据的低位字节内容保存在内存的高地址处,而数据的高位字节内容,保存在内存的低地址处。
小端(存储)模式: 是指数据的低位字节内容保存在内存的低地址处,而数据的高位字节内容,保存在内存的高地址处。
上述概念需要记住,方便分辨大小端
大小端的称呼来源于一个剥鸡蛋的故事,就是鸡蛋从大端剥还是从小端剥
(三)写一个程序,来判断大小端
思路:int a = 0;//0x00 00 00 01
  我们拿出它的第一个字节,如果第一个字节是0那我们可以判断机器是大端存储,第一个字节是1则是小端存储。
#include <stdio.h>
int check_sys()
{
	int a = 1;
	return *(char*)&a;
}
int main()
{
	int ret = check_sys();
	if(ret == 1)
	{
		printf("小端\n");
	}
	else
	{
		printf("大端\n");
	}
	return 0;
}

为什么不返回一个(char)a而是的返回*(char*)&a呢

  我们这个代码是把a的地址取出来,强制类型转换为char*的指针类型,这样我们一次只指向1个字节的内容了,不会发生截断,还能只取我们第一个字节的内容。而如果采用直接把a强制类型转换为char那不管是大小端,我们取到的还是1,如果让a = -1,这样写我们得到的是发生截断的值,返回的二进制内容是11111111,换成16进制就是ff

三、练习,整型提升

一、程序会输出什么?

#include <stdio.h>
int main()
{
 char a= -1;
 signed char b=-1;
 unsigned char c=-1;
 printf("a=%d,b=%d,c=%d",a,b,c);
 return 0;
}

我们先把-1的原反补码写出来,因为是整数我们先按整形写,4字节,32个bit位

原码10000000 00000000 00000000 00000001
反码11111111 11111111 11111111 11111110
补码11111111 11111111 11111111 11111111

  char 和signed char一样的,在内存中发生截断后的补码为11111111,取反加一还是会输出-1,

但是unsigned char最高位不是符号位11111111被认为是正数,原反补相同,打印出255

二、程序会输出什么

#include <stdio.h>
int main()
{
 char a = -128;
 printf("%u\n",a);
 return 0;
}
原码10000000 00000000 00000000 10000000
反码11111111 11111111 11111111 01111111
补码11111111 11111111 11111111 10000000  (8个bit位存入a

  1. %u是以十进制的形式打印无符号数
  2. 打印时发生整型提升,提升时,补最高位的数字,这时我们打印的二进制数补码变为:
  3. 11111111 11111111 11111111 10000000,打印无符号的原反补相同
  4. 转换成10进制就是4,294,967,168

三、

#include <stdio.h>
int main()
{
 char a = 128;
 printf("%u\n",a);
 return 0;
}
原码00000000 00000000 00000000 10000000
反码01111111 11111111 11111111 01111111
补码01111111 11111111 11111111 10000000  整型提升

和上面一样,打印出4,294,967,168

四、为什么输出255呢?

#include <stdio.h>
int main()
{
	char a[1000];
	int i;
	for(i=0; i<1000; i++)
	{
		a[i] = -1-i;
	}
	printf("%d",strlen(a));
	return 0;
}
  1. 大家应该知道char的范围是-128~127
  2. 这段代码a数组中被存的是:-1 -2 -3......(-1-127)-128 (-1-(-128))127 126 125......5 4 3 2 1 0 -1 -2......-128 127 126......5 4 3 2 1 0........
  3. strlen求字符串长度找的是\0,\0的ASCII码值是0,其实找的就是0!!
  4. 所以当我们第一次存到0时的位置就是长度结束的位置,从-1到-128是128个数字,从127到1是127个数字,加起来一共255,所以输出255

五、请在x86环境下运行以下代码

#include <stdio.h>
int main()
{
 int a[4] = { 1, 2, 3, 4 };
 int *ptr1 = (int *)(&a + 1);
 int *ptr2 = (int *)((int)a + 1);
 printf("%x,%x", ptr1[-1], *ptr2);
 return 0;
}
  1. %x是以16进制打印,%#x,就表示在输出时是以带0x前缀十六进制形式输出后面的对应参数。
  2. &a代表一整个数组+1相当于跳过一整个数组的大小
  3. (int)a表示将首元素地址强制类型转换为int型,+1就是简单的整数的加法运算,再2转换成int*类型输出

我们假设当前是小端环境:

ptr[-1] =>*(ptr-1) 向后偏移一个int的大小,所以输出4

假设a指向的首元素地址是0x010

转换成int类型就代表了16,加一代表17,把17强制类型转换成int*和原来的地址相差1啊,这不就相当于往后走了一个字节嘛!

所以*ptr2输出的是02 00 00 00,ptr[-1]输出的是00 00 00 04 ,也就是4,2000000

四、浮点数的存储

先来个逆天的,看不懂的老铁不用急,下面有讲解

#include <stdio.h>
int main()
{
 int n = 9;
 float *pFloat = (float *)&n;
 printf("n的值为:%d\n",n);
 printf("*pFloat的值为:%f\n",*pFloat);
 *pFloat = 9.0;
 printf("num的值为:%d\n",n);
 printf("*pFloat的值为:%f\n",*pFloat);
 return 0;
}
(1)浮点数的存储
上面的代码中, num *pFloat 在内存中明明是同⼀个数,为什么浮点数和整数的解读结果会差别这么大?
要理解这个结果,⼀定要搞懂浮点数在计算机内部的表示方法。
根据国际标准IEEE(电气和电子工程协会) 754,任意⼀个⼆进制浮点数V可以表示成下面的形式:
V   =  (−1)^S ∗ M ∗ 2^E
  • (−1)^S 表示符号位,当S=0,V为正数;当S=1,V为负数
  • M表示有效数字,M是大于等于1,小于2的
  • 2 ^E 表示指数位
举例来说:
十进制的5.0,写成二进制是 101.0 ,相当于 1.01×2^2
那么,按照上⾯V的格式,可以得出S=0,M=1.01,E=2。
十进制的-5.0,写成二进制是 -101.0 ,相当于 -1.01×2^2 。那么,S=1,M=1.01,E=2。
IEEE 754规定:
  • 对于32位的浮点数,最高的1位存储符号位S,接着的8位存储指数E,剩下的23位存储有效数字M
  • 对于64位的浮点数,最高的1位存储符号位S,接着的11位存储指数E,剩下的52位存储有效数字M
double的E是11位,M为52位
(2)浮点数存的过程
IEEE 754 对有效数字M和指数E,还有⼀些特别规定。
1.M
  前面说过, 1 M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中 xxxxxx 表示小数部分。
IEEE 754 规定,在计算机内部保存M时,默认这个数的 第⼀位总是1 ,因此可以被 舍去 只保存后面的 xxxxxx部分。比如保存1.01的时候,只保存01,等到读取的时候,再把第⼀位的1加上去。 这样做的目的,是节省1位有效数字 。以32位浮点数为例,留给M只有23位,将第⼀位的1舍去以后,等于可以保存24位有效数字。
2.至于指数E,情况就比较复杂
首先,E为⼀个 无符号整数 (unsigned int)
这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但是,我们知道, 科学计数法中的E是可以出现负数 的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。
(3)浮点数取的过程
指数E从内存中取出还可以再分成三种情况:
1.E不全为0或不全为1
这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效 数字M前加上第⼀位的1。
比如:0.5 的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为1.0*2^(-1),其 阶码为-1+127(中间值)=126,表示为01111110,而尾数1.0去掉整数部分为0,补齐0到23位 00000000000000000000000,则其⼆进制表示形式为:
0 01111110 00000000000000000000000

2.E全为0
这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,有效数字M不再加上第⼀位的1,而是还 原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于0的很小的数字
0 00000000 00100000000000000000000

3.E全为1

这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s)
0 11111111 00010000000000000000000
(4)题目解析
下面,让我们回到⼀开始的练习
先看第1环节,为什么 9 还原成浮点数,就成了 0.000000 ?
9以整型的形式存储在内存中,得到如下⼆进制序列:
0000 0000 0000 0000 0000 0000 0000 1001

  • 首先,将 9 的⼆进制序列按照浮点数的形式拆分,得到第⼀位符号位s=0,后面8位的指数E=00000000 ,
  • 最后23位的有效数字M=000 0000 0000 0000 0000 1001。
  • 由于指数E全为0,所以符合E为全0的情况。因此,浮点数V就写成:
  • V=(-1)^0 × 0.00000000000000000001001×2^(-126)=1.001×2^(-146)
  • 显然,V是⼀个很小的接近于0的正数,所以用十进制小数表示就是0.000000。
再看第2环节,浮点数9.0,为什么整数打印是 1091567616
  • 首先,浮点数9.0 等于⼆进制的1001.0,即换算成科学计数法是:1.001×2^3
  • 所以: 9.0  =  (−1)  ^0∗ (1.001)  ∗  2^3
  • 那么,第⼀位的符号位S=0,有效数字M等于001后⾯再加20个0,凑满23位,指数E等于3+127=130, ,即10000010
  • 所以,写成⼆进制形式,应该是S+E+M,即
0 10000010 001 0000 0000 0000 0000 0
这个32位的二进制数,被当做整数来解析的时候,就是整数在内存中的补码,原码正是
1091567616
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

库库爱学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值