【BZOJ】4590 [Shoi2015]自动刷题机

Description

曾经发明了信号增幅仪的发明家SHTSC又公开了他的新发明:自动刷题机–一种可以自动AC题目的神秘装置。自动刷题机刷题的方式非常简单:首先会瞬间得出题目的正确做法,然后开始写程序,每秒,自动刷题机的代码生成模块会有两种可能的结果:
A.写了x行代码。
B.心情不好,删掉了之前写的y行代码。(如果y大于当前代码长度则相当于全部删除。)
对于每个OJ所有题目,存在某个固定的长度n>0。一旦自动刷题机在某秒结束时积累了大于等于n行的代码,它就会自动提交并AC此题,然后新建一个文件开始写下一题。SHTSC在某个OJ上跑了一天的自动刷题机,得到了很多条关于写代码的日志信息。他突然发现自己没有记录这个OJn究竟是多少。所幸他通过自己在OJ上的Rank知道了机一共切了k道题。希望你计算n可能的最小值和最大值。

Input

第一行两个整数lk,表示刷题机的日志一共有l行,一共了切了k题。
第二行l个整数,x1xlxi>=0表示写了xi行代码。xi<0表示删除了这道题的xi行代码。
1<=l,k<=100000|xi|<=109

Output

输出两个数ab。分别代表n可能的最小值和最大值。如果不存在这样的n则输出1

Solution

这题目看过去就知道是二分(源自去年NOIP跳石头掉水的惨痛经历)

如果n小不会比n大的AC的题数少,所以有这样一个单调的性质就可以二分上下界了。

(窝写这题卡细节卡了好多次,太弱啦QAQ)

#include<stdio.h>
#define N 100005

typedef long long ll;

int a[N],n,k,t;
ll  l,r,mid,tot;

inline int judge(const ll &p)
{
    ll now=0;int sum=0;
    for (int i=0;i<n;i++)
    {
        now+=a[i];
        if (now>=p) sum++,now=0;
        if (now<0) now=0;
    }
    return sum;
}

int main()
{
    scanf("%d%d",&n,&k);
    for (int i=0;i<n;i++) scanf("%d",a+i),tot+=(a[i]>0)?a[i]:1,t+=(a[i]>0);
    if (t<k){puts("-1");return 0;}
    for (l=1,r=tot,mid=(l+r)>>1;l<r;mid=(l+r+1)>>1) if (judge(mid)<k) r=mid-1;
    else l=mid;
    ll a2=l;
    for (l=1,r=tot,mid=(l+r)>>1;l<r;mid=(l+r)>>1) if (judge(mid)>k) l=mid+1;
    else r=mid;
    ll a1=l;
    if (judge(a1)!=k || judge(a2)!=k) puts("-1");
    else printf("%lld %lld",a1,a2);
}
### NOIP2015 运输计划 BZOJ4326 解分析 #### 问背景 该问是经典的图论优化问之一,主要考察树结构上的路径操作以及高效的数据处理能力。目要求在一个由 $n$ 个节点组成的无向连通树中找到最优的一条边将其改造为虫洞(通过此边不需要耗费时间),从而使得给定的 $m$ 条运输路径中的最长耗时最小化。 --- #### 解决方案概述 解决这一问的核心在于利用 **二分答案** 和 **树上差分技术** 的组合来实现高效的计算过程。以下是具体的技术细节: 1. **二分答案**: 设当前目标是最小化的最大路径长度为 $T_{\text{max}}$。我们可以通过二分的方式逐步逼近最终的结果。每次尝试验证是否存在一种方式将某条边改为虫洞后使所有路径的最大值不超过当前设定的目标值 $mid$[^1]。 2. **路径标记与统计**: 使用树上差分的思想对每一条路径进行标记并快速统计受影响的情况。假设两点之间的最近公共祖先 (Lowest Common Ancestor, LCA) 是 $r = \text{lca}(u_i, v_i)$,则可以在三个位置分别施加影响:增加 $(u_i + 1), (v_i + 1)$ 同时减少 $(r - 2)$。这种操作能够有效覆盖整条路径的影响范围,并便于后续统一查询和判断[^1]。 3. **数据结构支持**: 结合线段树或者 BIT (Binary Indexed Tree),可以进一步加速区间修改和单点查询的操作效率。这些工具帮助我们在复杂度范围内完成大量路径的同时更新和检索需求[^2]。 4. **实际编码技巧**: 实现过程中需要注意一些边界条件和技术要点: - 正确维护 DFS 序列以便映射原树节点到连续编号序列; - 准备好辅助函数用于快速定位 LCA 节点及其对应关系; - 编码阶段应特别留意变量初始化顺序及循环终止逻辑以防潜在错误发生。 下面给出一段基于上述原理的具体 Python 实现代码作为参考: ```python from collections import defaultdict, deque class Solution: def __init__(self, n, edges): self.n = n self.graph = defaultdict(list) for u, v, w in edges: self.graph[u].append((v, w)) self.graph[v].append((u, w)) def preprocess(self): """Preprocess the tree to get dfs order and lca.""" pass def binary_search_answer(self, paths): low, high = 0, int(1e9) best_possible_time = high while low <= high: mid = (low + high) // 2 if self.check(mid, paths): # Check feasibility with current 'mid' best_possible_time = min(best_possible_time, mid) high = mid - 1 else: low = mid + 1 return best_possible_time def check(self, limit, paths): diff_array = [0]*(self.n+1) for path_start, path_end in paths: r = self.lca(path_start, path_end) # Apply difference on nodes based on their relationship. diff_array[path_start] += 1 diff_array[path_end] += 1 diff_array[r] -= 2 suffix_sum = [sum(diff_array[:i]) for i in range(len(diff_array)+1)] # Verify whether any edge can be modified within given constraints. possible_to_reduce_max = False for node in range(1, self.n+1): parent_node = self.parent[node] if suffix_sum[node]-suffix_sum[parent_node]>limit: continue elif not possible_to_reduce_max: possible_to_reduce_max=True return possible_to_reduce_max # Example usage of class methods would follow here... ``` --- #### 总结说明 综上所述,本的关键突破点在于如何巧妙运用二分策略缩小搜索空间,再辅以恰当的树形结构遍历技术和差分手段提升整体性能表现。这种方法不仅适用于此类特定场景下的最优化求解任务,在更广泛的动态规划领域也有着广泛的应用前景[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值