生产者理论

本文探讨了数学在经济学中的应用,特别是导数在分析生产函数的凹凸性、边际技术替代率和成本最小化中的关键作用。通过对柯布道格拉斯、莱昂提夫和CES生产函数的分析,展示了如何利用导数确定最优投入组合,并解释了如何通过成本函数来求解利润最大化问题。此外,还讨论了替代弹性和生产技术的模型表达,强调了数学在理解经济行为中的重要性。
摘要由CSDN通过智能技术生成

知识补充

导数

原函数导函数
y = ln ⁡ x y = \ln x y=lnx y ′ = 1 x y' = \frac{1}{x} y=x1
y = x n y = x^n y=xn y ′ = n x n − 1 y' = nx^{n-1} y=nxn1
y = 1 x y = \frac{1}{x} y=x1 y ′ = − 1 x 2 y' = -\frac{1}{x^2} y=x21
y = f [ g ( x ) ] y = f[g(x)] y=f[g(x)] y ′ = f ′ [ g ( x ) ] ⋅ g ′ ( x ) y' = f'[g(x)] \cdot g'(x) y=f[g(x)]g(x)

凹凸性

一元函数

f ( x ) f(x) f(x) 在区间 I I I 上连续,如果对 I I I 上任意两点 x 1 x_1 x1 x 2 x_2 x2,恒有
f ( x 1 + x 2 2 ) < f ( x 1 ) + f ( x 2 ) 2 , f \left(\frac{x_1+x_2}{2} \right) < \frac{f(x_1)+f(x_2)}{2}, f(2x1+x2)<2f(x1)+f(x2),
那么称 f ( x ) f(x) f(x) I I I 上的图形是凹的(或凹弧);

如果恒有
f ( x 1 + x 2 2 ) > f ( x 1 ) + f ( x 2 ) 2 , f \left(\frac{x_1+x_2}{2} \right) > \frac{f(x_1)+f(x_2)}{2}, f(2x1+x2)>2f(x1)+f(x2),
那么称 f ( x ) f(x) f(x) I I I 上的图形是凸的(或凸弧)。

二元函数

f ( x , y ) f(x, y) f(x,y) 在区域 D D D 上具有二阶连续偏导数,记 A = f x x ′ ′ ( x , y ) A=f''_{xx}(x,y) A=fxx(x,y) B = f x y ′ ′ ( x , y ) B=f''_{xy}(x,y) B=fxy(x,y) C = f y y ′ ′ ( x , y ) C=f''_{yy}(x,y) C=fyy(x,y),则:
(1)在 D D D 上恒有 A > 0 A>0 A>0,且 A C − B 2 ≥ 0 AC-B^2 \geq 0 ACB20 时, f ( x , y ) f(x,y) f(x,y) 在区域 D D D 上是凸函数;
(2)在 D D D 上恒有 A < 0 A<0 A<0,且 A C − B 2 ≥ 0 AC-B^2 \geq 0 ACB20 时, f ( x , y ) f(x,y) f(x,y) 在区域 D D D 上是凹函数。

f ( x , y ) f(x,y) f(x,y) 是在开区域 D D D 内具有连续偏导数的凸(或者凹)函数, ( x 0 , y 0 ) ∈ D (x_0,y_0)\in D (x0,y0)D f x ′ ( x 0 , y 0 ) = 0 f'_x(x_0,y_0)=0 fx(x0,y0)=0 f y ′ ( x 0 , y 0 ) = 0 f'_y(x_0,y_0)=0 fy(x0,y0)=0,则 f ( x 0 , y 0 ) f(x_0,y_0) f(x0,y0) 必为 f ( x , y ) f(x,y) f(x,y) D D D 内的最小值(或最大值)。



三大经典生产函数

  1. 柯布道格拉斯生产函数
  2. 莱昂提夫生产函数
  3. CES生产函数

柯布道格拉斯函数

公式
Y = A L β K α , Y = AL^{\beta}K^{\alpha}, Y=ALβKα,
其中:

符号意义
Y Y Y产出数量
L L L劳动力投入
K K K资本投入
A A A总生产率因子
α \alpha α资本的产出弹性
β \beta β劳动力产出弹性

α \alpha α β \beta β 具有以下的关系:

关系意义
α + β = 1 \alpha + \beta = 1 α+β=1规模报酬不变
α + β > 1 \alpha + \beta > 1 α+β>1规模报酬递增
α + β < 1 \alpha + \beta < 1 α+β<1规模报酬递减

莱昂提夫生产函数

公式
q = min ⁡ ( z 1 a , z 2 b ) , q = \min \left(\frac{z_1}{a}, \frac{z_2}{b} \right), q=min(az1,bz2),
其中:

符号意义
z 1 z_1 z1 z 2 z_2 z2两种要素的投入数量
a a a b b b代表生产技术的系数

CES 生产函数

公式
y = [ a 1 x 1 ρ + a 2 x 2 ρ ] 1 ρ . y = \left[a_1x_1^{\rho} + a_2x_2^{\rho} \right]^{\frac{1}{\rho}}. y=[a1x1ρ+a2x2ρ]ρ1.
替代弹性:
σ = d ln ⁡ x 2 / x 1 d ln ⁡ ∣ T R S ∣ = 1 1 − ρ . \sigma = \frac{d\ln x_2 / x_1}{d\ln \left|TRS \right|} = \frac{1}{1 - \rho}. σ=dlnTRSdlnx2/x1=1ρ1.

生产技术的模型表达

边际技术替代率

在维持产量水平不变的条件下,增加一个单位的某种要素投入量时所减少的另一种要素的投入量,被称为边际技术替代率(Marginal Rate of Technical Substitution,MRTS)。

边际替代率的计算公式

边际技术替代率 = 等产量曲线的斜率的绝对值 = 保持产量不变的情况下,减少 x 2 x_2 x2 投入同时增加 x 1 x_1 x1 投入数量的比值
M R T S ( x 1 , x 2 ) = − Δ x 2 Δ x 1 = M P 1 M P 2 . MRTS(x_1, x_2) = - \frac{\Delta x_2}{\Delta x_1} = \frac{MP_1}{MP_2}. MRTS(x1,x2)=Δx1Δx2=MP2MP1.
其中, M P 1 MP_1 MP1 M P 2 MP_2 MP2 分别是投入要素 1 和 2 的边际产出。

边际技术替代率的特点

从几何意义上看,在一条等产量曲线上的任意一点,投入 x 1 x_1 x1 对投入 x 2 x_2 x2 的边际技术替代率,等于等产量曲线上这一点的斜率。
边际技术替代率具有如下特点:

  1. 当等产量曲线的斜率为负值时,表明两种生产要素可以互相替代,一种生产要素增加,另外一种生产要素必须减少方能使产量维持在同一水平上。
  2. 当等产量曲线的斜率为正值时,表明两种生产要素必须同时增加才能达到与从前相同的产量水平。
  3. 等产量曲线的斜率也可以是无穷大或为零,此时表明两种生产要素不能互相替代。

替代弹性

替代弹性 = 等产量曲线的曲度 = 要素投入比例相对于边际技术替代率的敏感度

σ 21 = d ln ⁡ ( x 2 / x 1 ) d ln ⁡ M R T S 12 = d ln ⁡ ( x 2 / x 1 ) d ln ⁡ ( d f d x 1 / d f d x 2 ) . \sigma_{21} = \frac{d\ln(x_2 / x_1)}{d\ln MRTS_{12}} = \frac{d\ln(x_2 / x_1)}{d\ln \left(\frac{df}{dx_1} / \frac{df}{dx_2} \right)}. σ21=dlnMRTS12dln(x2/x1)=dln(dx1df/dx2df)dln(x2/x1).
注 意 ( 我 的 好 友 提 醒 我 ) {\color{blue}注意(我的好友提醒我)}
在这里插入图片描述

例子
考虑道格拉斯生产函数 f ( x 1 , x 2 ) = x 1 a x 2 1 − α f(x_1, x_2) = x_1^{a}x_2^{1-\alpha} f(x1,x2)=x1ax21α
边际技术替代率是:
M R T S 21 = 1 − a a x 1 x 2 MRTS_{21} = \frac{1- a}{a} \frac{x_1}{x_2} MRTS21=a1ax2x1


求解过程 {\color{red}\text{求解过程}} 求解过程
M R T S ( x 1 , x 2 ) = M P 1 M P 2 = ∂ f ∂ x 1 / ∂ f ∂ x 2 = ( x 2 1 − a ⋅ a ⋅ x 1 a − 1 ) / ( x 1 a ⋅ ( 1 − a ) ⋅ x 2 − a ) = a 1 − a ⋅ x 1 a − 1 x 1 a ⋅ x 2 1 − a x 2 − a = a 1 − a ⋅ 1 x 1 ⋅ x 2 1 = a 1 − a x 2 x 1 . \begin{aligned} MRTS(x_1, x_2) &= \frac{MP_1}{MP_2} \\ &= \frac{\partial f}{\partial x_1} / \frac{\partial f}{\partial x_2} \\ &= \left(x_2^{1-a}\cdot a \cdot x_1^{a-1} \right) / \left(x_1^a \cdot (1-a) \cdot x_2^{-a} \right) \\ &= \frac{a}{1-a} \cdot \frac{x_1^{a-1}}{x_1^a} \cdot \frac{x_2^{1-a}}{x_2^{-a}} \\ &= \frac{a}{1-a} \cdot \frac{1}{x_1} \cdot \frac{x_2}{1} \\ &= \frac{a}{1-a} \frac{x_2}{x_1} \end{aligned}. MRTS(x1,x2)=MP2MP1=x1f/x2f=(x21aax1a1)/(x1a(1a)x2a)=1aax1ax1a1x2ax21a=1aax111x2=1aax1x2.
M R T S ( x 1 , x 2 ) MRTS(x_1, x_2) MRTS(x1,x2) 简记为 M R T S 12 MRTS_{12} MRTS12
M R T S 21 = M P 2 M P 1 = 1 M R T S 12 = 1 − a a x 1 x 2 . MRTS_{21} = \frac{MP_2}{MP_1}=\frac{1}{MRTS_{12}}=\frac{1-a}{a}\frac{x_1}{x_2}. MRTS21=MP1MP2=MRTS121=a1ax2x1.


记符号 θ \theta θ
θ = 1 − a a x 1 x 2 , \theta = \frac{1- a}{a} \frac{x_1}{x_2}, θ=a1ax2x1,
则有
x 1 x 2 = a 1 − a θ . \frac{x_1}{x_2} = \frac{a}{1-a} \theta. x2x1=1aaθ.

替代弹性为
σ 21 = d ln ⁡ ( x 1 x 2 ) d ln ⁡ ( M R T S 21 ) = d ln ⁡ ( x 1 x 2 ) d ln ⁡ ( θ ) = d x 1 x 2 x 1 x 2 θ d θ = d x 1 x 2 d θ θ x 1 x 2 = a 1 − a 1 − a a x 1 x 2 x 2 x 1 = 1. \begin{aligned} \sigma_{21} &= \frac{d\ln \left(\frac{x_1}{x_2} \right)}{d\ln \left(MRTS_{21}\right)} \\ &= \frac{d\ln \left(\frac{x_1}{x_2} \right)}{d\ln \left(\theta \right)} \\ &= \frac{d\frac{x_1}{x_2}}{\frac{x_1}{x_2}}\frac{\theta}{d\theta} \\ &= \frac{d\frac{x_1}{x_2}}{d\theta}\frac{\theta}{\frac{x_1}{x_2}} \\ &= \frac{a}{1-a}\frac{1-a}{a}\frac{x_1}{x_2}\frac{x_2}{x_1} \\ &= 1. \end{aligned} σ21=dln(MRTS21)dln(x2x1)=dln(θ)dln(x2x1)=x2x1dx2x1dθθ=dθdx2x1x2x1θ=1aaa1ax2x1x1x2=1.


求 解 方 法 二 {\color{red}求解方法二}
σ 21 = d ln ⁡ ( x 1 x 2 ) d ln ⁡ ( M R T S 21 ) = d ln ⁡ ( a 1 − a θ ) d ln ⁡ θ = ( d ln ⁡ ( a 1 − a θ ) d θ ) / ( d ln ⁡ θ d θ ) = ( 1 a 1 − a θ ⋅ a 1 − a ) / ( 1 θ ) = ( 1 θ ) / ( 1 θ ) = 1. \begin{aligned} \sigma_{21} &= \frac{d\ln \left(\frac{x_1}{x_2} \right)}{d\ln \left(MRTS_{21}\right)} \\ &= \frac{d\ln (\frac{a}{1-a} \theta)}{d \ln \theta} \\ &= \left(\frac{d \ln (\frac{a}{1-a} \theta)}{d\theta}\right) / \left(\frac{d\ln \theta}{d \theta}\right) \\ &= \left(\frac{1}{\frac{a}{1-a} \theta} \cdot \frac{a}{1-a}\right) / \left(\frac{1}{\theta} \right)\\ &= \left(\frac{1}{\theta}\right) / \left(\frac{1}{\theta}\right) \\ &= 1. \end{aligned} σ21=dln(MRTS21)dln(x2x1)=dlnθdln(1aaθ)=(dθdln(1aaθ))/(dθdlnθ)=(1aaθ11aa)/(θ1)=(θ1)/(θ1)=1.


CES生产函数的替代弹性?
求 解 过 程 {\color{red}求解过程}
CES生产函数为
y = [ a 1 x 1 ρ + a 2 x 2 ρ ] 1 ρ y = \left[a_1x_1^{\rho}+a_2x_2^{\rho} \right]^{\frac{1}{\rho}} y=[a1x1ρ+a2x2ρ]ρ1
边际技术替代率 MRTS 为
M R T S 12 = M P 1 M P 2 = ( ∂ y ∂ x 1 ) / ( ∂ y ∂ x 2 ) = ( 1 ρ [ a 1 x 1 ρ + a 2 x 2 ρ ] 1 ρ − 1 ) ⋅ a 1 ρ x 1 ρ − 1 ( 1 ρ [ a 1 x 1 ρ + a 2 x 2 ρ ] 1 ρ − 1 ) ⋅ a 2 ρ x 2 ρ − 1 = a 1 a 2 ( x 1 x 2 ) ρ − 1 . \begin{aligned} MRTS_{12} &= \frac{MP_1}{MP_2} \\ &=\left(\frac{\partial y}{\partial x_1} \right) / \left(\frac{\partial y}{\partial x_2} \right) \\ &=\frac{\left(\frac{1}{\rho}\left[a_1x_1^{\rho}+a_2x_2^{\rho}\right]^{\frac{1}{\rho}-1} \right) \cdot a_1\rho x_1^{\rho-1}}{\left(\frac{1}{\rho}\left[a_1x_1^{\rho}+a_2x_2^{\rho} \right]^{\frac{1}{\rho}-1} \right) \cdot a_2 \rho x_2^{\rho-1}} \\ &= \frac{a_1}{a_2}\left(\frac{x_1}{x_2}\right)^{\rho-1}. \end{aligned} MRTS12=MP2MP1=(x1y)/(x2y)=(ρ1[a1x1ρ+a2x2ρ]ρ11)a2ρx2ρ1(ρ1[a1x1ρ+a2x2ρ]ρ11)a1ρx1ρ1=a2a1(x2x1)ρ1.

记符号 θ \theta θ
θ = a 1 a 2 ( x 1 x 2 ) ρ − 1 . \theta = \frac{a_1}{a_2}\left(\frac{x_1}{x_2}\right)^{\rho-1}. θ=a2a1(x2x1)ρ1.
则有
x 1 x 2 = ( a 2 a 1 θ ) 1 ρ − 1 . \frac{x_1}{x_2} = \left(\frac{a_2}{a_1}\theta\right)^{\frac{1}{\rho-1}}. x2x1=(a1a2θ)ρ11.

替代弹性
σ 12 = d ln ⁡ ( x 2 x 1 ) d ln ⁡ ( M R T S 12 ) = d ln ⁡ ( x 2 x 1 ) d ln ⁡ θ = d ln ⁡ ( 1 ( a 2 a 1 θ ) 1 ρ − 1 ) d ln ⁡ θ = ( d ln ⁡ ( 1 ( a 2 a 1 θ ) 1 ρ − 1 ) d θ ) / ( d ln ⁡ θ d θ ) = ( a 2 a 1 θ ) 1 ρ − 1 ⋅ ( − 1 ) 1 ( ( a 2 a 1 θ ) 1 ρ − 1 ) 2 ⋅ 1 ρ − 1 ( a 2 a 1 θ ) 1 ρ − 1 − 1 ⋅ ( a 2 a 1 ) / ( 1 θ ) = ( − 1 ) 1 ρ − 1 ⋅ ( a 2 a 1 θ ) − 1 ⋅ ( a 2 a 1 ) / ( 1 θ ) = ( − 1 ) 1 ρ − 1 θ − 1 θ = ( − 1 ) 1 ρ − 1 = 1 1 − ρ . \begin{aligned} \sigma_{12} &= \frac{d\ln\left(\frac{x_2}{x_1}\right)}{d\ln \left(MRTS_{12} \right)} \\ &= \frac{d\ln\left(\frac{x_2}{x_1}\right)}{d\ln \theta} \\ &= \frac{d\ln \left(\frac{1}{\left(\frac{a_2}{a_1}\theta\right)^{\frac{1}{\rho-1}}} \right)}{d\ln\theta} \\ &= \left(\frac{d\ln \left(\frac{1}{\left(\frac{a_2}{a_1}\theta\right)^{\frac{1}{\rho-1}}} \right)}{d \theta } \right) / \left(\frac{d \ln\theta }{d\theta}\right) \\ &= \left(\frac{a_2}{a_1}\theta \right)^{\frac{1}{\rho-1}} \cdot (-1)\frac{1}{\left(\left(\frac{a_2}{a_1}\theta \right)^{\frac{1}{\rho-1}} \right)^2} \cdot \frac{1}{\rho-1} \left(\frac{a_2}{a_1}\theta \right)^{\frac{1}{\rho-1}-1} \cdot \left(\frac{a_2}{a_1}\right) / \left(\frac{1}{\theta}\right) \\ &= (-1)\frac{1}{\rho-1} \cdot \left(\frac{a_2}{a_1}\theta \right)^{-1} \cdot \left(\frac{a_2}{a_1}\right) / \left(\frac{1}{\theta}\right) \\ &= (-1)\frac{1}{\rho-1} \theta^{-1} \theta \\ &= (-1)\frac{1}{\rho-1} \\ &= \frac{1}{1-\rho}. \end{aligned} σ12=dln(MRTS12)dln(x1x2)=dlnθdln(x1x2)=dlnθdln((a1a2θ)ρ111)=dθdln((a1a2θ)ρ111)/(dθdlnθ)=(a1a2θ)ρ11(1)((a1a2θ)ρ11)21ρ11(a1a2θ)ρ111(a1a2)/(θ1)=(1)ρ11(a1a2θ)1(a1a2)/(θ1)=(1)ρ11θ1θ=(1)ρ11=1ρ1.


练习
生产函数 q ( x 1 , x 2 ) = x 1 α x 2 β q(x_1, x_2) = x_1^{\alpha}x_2^{\beta} q(x1,x2)=x1αx2β α > 0 \alpha > 0 α>0 β > 0 \beta > 0 β>0
证明(1)当 α + β ≤ 1 \alpha + \beta \leq 1 α+β1 时, q ( x 1 , x 2 ) q(x_1, x_2) q(x1,x2) 是凹函数。
(2)当 α > 0 \alpha > 0 α>0 β > 0 \beta > 0 β>0 时, ln ⁡ ( q ( x 1 , x 2 ) ) \ln \left(q(x_1, x_2) \right) ln(q(x1,x2)) 是凹函数。
证 明 {\color{red}证明}
(1)
q x 1 ′ ( x 1 , x 2 ) = x 2 β ⋅ α x 1 α − 1 = α x 1 α − 1 x 2 β , q'_{x_1}(x_1, x_2) = x_2^{\beta} \cdot \alpha x_1^{\alpha-1}=\alpha x_1^{\alpha-1}x_2^{\beta}, qx1(x1,x2)=x2βαx1α1=αx1α1x2β,
q x 2 ′ ( x 1 , x 2 ) = x 1 α ⋅ β x 2 β − 1 = β x 1 α x 2 β − 1 , q'_{x_2}(x_1, x_2) = x_1^{\alpha} \cdot \beta x_2^{\beta-1}=\beta x_1^{\alpha}x_2^{\beta-1}, qx2(x1,x2)=x1αβx2β1=βx1αx2β1,
A = q x 1 x 1 ′ ′ ( x 1 , x 2 ) = α x 2 β ⋅ ( α − 1 ) x 1 α − 2 = α ( α − 1 ) x 1 α − 2 x 2 β , A = q''_{x_1x_1}(x_1, x_2) = \alpha x_2^{\beta} \cdot (\alpha-1) x_1^{\alpha-2}=\alpha (\alpha-1)x_1^{\alpha-2}x_2^{\beta}, A=qx1x1(x1,x2)=αx2β(α1)x1α2=α(α1)x1α2x2β,
B = q x 1 x 2 ′ ′ ( x 1 , x 2 ) = α x 1 α − 1 ⋅ β x 2 β − 1 = α β x 1 α − 1 x 2 β − 1 , B = q''_{x_1x_2}(x_1,x_2) = \alpha x_1^{\alpha-1} \cdot \beta x_2^{\beta-1} = \alpha \beta x_1^{\alpha-1} x_2^{\beta-1}, B=qx1x2(x1,x2)=αx1α1βx2β1=αβx1α1x2β1,
C = q x 2 x 2 ′ ′ ( x 1 , x 2 ) = β x 1 α ⋅ ( β − 1 ) x 2 β − 2 = β ( β − 1 ) x 1 α x 2 β − 2 , C = q''_{x_2x_2}(x_1,x_2) = \beta x_1^{\alpha} \cdot (\beta-1)x_2^{\beta-2} =\beta (\beta-1)x_1^{\alpha}x_2^{\beta-2}, C=qx2x2(x1,x2)=βx1α(β1)x2β2=β(β1)x1αx2β2,

A C − B 2 = α ( α − 1 ) x 1 α − 2 x 2 β ⋅ β ( β − 1 ) x 1 α x 2 β − 2 − ( α β x 1 α − 1 x 2 β − 1 ) 2 = α β ( α − 1 ) ( β − 1 ) x 1 2 α − 2 x 2 2 β − 2 − α 2 β 2 x 1 2 ( α − 1 ) x 2 2 ( β − 1 ) = ( α 2 β 2 − α 2 β − α β 2 + α β ) x 1 2 α − 2 x 2 2 β − 2 − α 2 β 2 x 1 2 α − 2 x 2 2 β − 2 = ( − α 2 β − α β 2 + α β ) x 1 2 α − 2 x 2 2 β − 2 = α β ( − α − β + 1 ) x 1 2 α − 2 x 2 2 β − 2 , \begin{aligned} AC-B^2 &=\alpha (\alpha-1)x_1^{\alpha-2}x_2^{\beta} \cdot \beta (\beta-1)x_1^{\alpha}x_2^{\beta-2} - \left(\alpha \beta x_1^{\alpha-1} x_2^{\beta-1} \right)^2 \\ &= \alpha \beta (\alpha-1)(\beta-1)x_1^{2\alpha-2}x_2^{2\beta-2} - \alpha^2\beta^2x_1^{2(\alpha-1)}x_2^{2(\beta-1)} \\ &= (\alpha^2\beta^2-\alpha^2\beta-\alpha\beta^2+\alpha\beta) x_1^{2\alpha-2}x_2^{2\beta-2} - \alpha^2\beta^2x_1^{2\alpha-2}x_2^{2\beta-2} \\ &= (-\alpha^2\beta-\alpha\beta^2+\alpha\beta)x_1^{2\alpha-2}x_2^{2\beta-2} \\ &= \alpha\beta(-\alpha-\beta+1)x_1^{2\alpha-2}x_2^{2\beta-2}, \\ \end{aligned} ACB2=α(α1)x1α2x2ββ(β1)x1αx2β2(αβx1α1x2β1)2=αβ(α1)(β1)x12α2x22β2α2β2x12(α1)x22(β1)=(α2β2α2βαβ2+αβ)x12α2x22β2α2β2x12α2x22β2=(α2βαβ2+αβ)x12α2x22β2=αβ(αβ+1)x12α2x22β2,
因为 α + β ≤ 1 \alpha+\beta \leq 1 α+β1,所以 1 − α − β ≥ 0 1-\alpha-\beta \geq 0 1αβ0 α > 0 \alpha >0 α>0 β > 0 \beta > 0 β>0,所以 α β > 0 \alpha \beta > 0 αβ>0
A C − B 2 ≥ 0 AC-B^2 \geq 0 ACB20
因为 0 < α < 1 0 < \alpha < 1 0<α<1,所以 α − 1 < 0 \alpha - 1 < 0 α1<0,所以 A < 0 A < 0 A<0
由二元函数的凹凸性判定可知, q ( x 1 , x 2 ) q(x_1,x_2) q(x1,x2) 是凹函数。
(2)
t ( x 1 , x 2 ) = ln ⁡ ( q ( x 1 , x 2 ) ) = ln ⁡ ( x 1 α x 2 β ) t(x_1,x_2)=\ln \left(q(x_1,x_2) \right)=\ln \left(x_1^{\alpha}x_2^{\beta} \right) t(x1,x2)=ln(q(x1,x2))=ln(x1αx2β)
t x 1 ′ ( x 1 , x 2 ) = 1 x 1 α x 2 β ⋅ x 2 β α x 1 α − 1 = α x 1 − 1 , t'_{x_1}(x_1, x_2)=\frac{1}{x_1^{\alpha}x_2^{\beta}} \cdot x_2^{\beta}\alpha x_1^{\alpha-1}=\alpha x_1^{-1}, tx1(x1,x2)=x1αx2β1x2βαx1α1=αx11,
t x 2 ′ ( x 1 , x 2 ) = 1 x 1 α x 2 β ⋅ x 1 α β x 2 β − 1 = β x 2 − 1 , t'_{x_2}(x_1,x_2)=\frac{1}{x_1^{\alpha}x_2^{\beta}} \cdot x_1^{\alpha}\beta x_2^{\beta-1}=\beta x_2^{-1}, tx2(x1,x2)=x1αx2β1x1αβx2β1=βx21,
A = t x 1 x 1 ′ ′ ( x 1 , x 2 ) = α ⋅ ( − 1 ) x 1 − 2 = − α x 1 − 2 , A = t''_{x_1x_1}(x_1,x_2)=\alpha \cdot(-1)x_1^{-2}= -\alpha x_1^{-2}, A=tx1x1(x1,x2)=α(1)x12=αx12,
B = t x 1 x 2 ′ ′ ( x 1 , x 2 ) = 0 , B = t''_{x_1x_2}(x_1,x_2)=0, B=tx1x2(x1,x2)=0,
C = t x 2 x 2 ′ ′ ( x 1 , x 2 ) = β ⋅ ( − 1 ) x 2 − 2 = − β x 2 − 2 , C = t''_{x_2x_2}(x_1,x_2) = \beta \cdot (-1)x_2^{-2} = -\beta x_2^{-2}, C=tx2x2(x1,x2)=β(1)x22=βx22,

A C − B 2 = ( − α x 1 − 2 ) ( − β x 2 − 2 ) − 0 = α β ( x 1 x 2 ) − 2 ≥ 0. AC-B^2=\left(-\alpha x_1^{-2} \right) \left(-\beta x_2^{-2} \right) - 0=\alpha \beta (x_1x_2)^{-2} \geq 0. ACB2=(αx12)(βx22)0=αβ(x1x2)20.
并且 A = − α x 1 − 2 < 0 A = -\alpha x_1^{-2} < 0 A=αx12<0,所以由二元函数凹凸性判定定理,得
t ( x 1 , x 2 ) = ln ⁡ ( x 1 α x 2 β ) t(x_1,x_2)=\ln \left(x_1^{\alpha}x_2^{\beta} \right) t(x1,x2)=ln(x1αx2β) 是凹函数,也即是 ln ⁡ q ( x 1 , x 2 ) \ln q(x_1, x_2) lnq(x1,x2) 是凹函数。

利润最大化

  • 完全竞争市场下
    • 简化了市场需求,产品售价给定
    • 线性要素成本,没有规模效应
    • 仅考虑生产技术约束
  • 利润最大化条件:每种要素的边际产出价值等于边际成本

例子:单一产品,产量 y y y;单一投入,数量 x x x
生产函数: y = x a , y = x^a, y=xa,
利润最大化条件: p a x a − 1 = w pax^{a-1}=w paxa1=w
投入要素数量: x ( p , w ) = ( w a p ) 1 a − 1 x(p, w)=\left(\frac{w}{ap}\right)^{\frac{1}{a-1}} x(p,w)=(apw)a11
生产产品数量: y ( p , w ) = x a ( p , w ) = ( w a p ) a a − 1 y(p, w)=x^a(p, w) = \left(\frac{w}{ap} \right)^{\frac{a}{a-1}} y(p,w)=xa(p,w)=(apw)a1a
利润函数: π ( p , w ) = p y ( p , w ) − w x ( p , w ) = p ( w a p ) a a − 1 − w ( w a p ) 1 a − 1 = p ( w a p ) 1 a − 1 ( w a p ) 1 − w ( w a p ) 1 a − 1 = ( w a − w ) ( w a p ) 1 a − 1 = w ( 1 − a a ) ( w a p ) 1 a − 1 . \begin{aligned} \pi(p, w) &= py(p,w)-wx(p,w) \\ &= p\left(\frac{w}{ap} \right)^{\frac{a}{a-1}}-w\left(\frac{w}{ap}\right)^{\frac{1}{a-1}} \\ &= p\left(\frac{w}{ap} \right)^{\frac{1}{a-1}} \left(\frac{w}{ap} \right)^1 - w\left(\frac{w}{ap}\right)^{\frac{1}{a-1}} \\ &= \left(\frac{w}{a}-w \right)\left(\frac{w}{ap} \right)^{\frac{1}{a-1}} \\ &= w\left(\frac{1-a}{a} \right) \left(\frac{w}{ap} \right)^{\frac{1}{a-1}}. \end{aligned} π(p,w)=py(p,w)wx(p,w)=p(apw)a1aw(apw)a11=p(apw)a11(apw)1w(apw)a11=(aww)(apw)a11=w(a1a)(apw)a11.

(我的理解:产品单价为 p p p,数量为 y y y;投入单价为 w w w,数量为 x x x

成本最小化

  • 可进一步应用于非竞争性市场
    min ⁡ x w x s.t.   f ( x ) = y . \min_{\mathbf{x}} \mathbf{wx} \\ \textbf{s.t. } f(\mathbf{x})=y. xminwxs.t. f(x)=y.

成本最小化条件:
w i w j = ∂ f ( x ∗ ) ∂ x i ∂ f ( x ∗ ) ∂ x j \frac{w_i}{w_j} = \frac{\frac{\partial f(\mathbf{x}^\ast)}{\partial x_i}}{\frac{\partial f(\mathbf{x}^\ast)}{\partial x_j}} wjwi=xjf(x)xif(x)

成本函数

生产技术的经济特征

  • 柯布道格拉斯技术
    c ( w , y ) = min ⁡ x 1 , x 2 w 1 x 1 + w 2 x 2 s.t.   A x 1 a x 2 b = y . c(\mathbf{w}, y) = \min_{x_1, x_2} w_1x_1+w_2x_2 \\ \textbf{s.t. } Ax_1^ax_2^b = y. c(w,y)=x1,x2minw1x1+w2x2s.t. Ax1ax2b=y.
    从 柯 布 道 格 拉 斯 生 产 函 数 推 导 成 本 函 数 过 程 {\color{red}从柯布道格拉斯生产函数推导成本函数过程}
    第一步:从约束条件中得到 x 2 x_2 x2 的表达式
    A x 1 a x 2 b = y x 2 b = y A x 1 a x 2 = ( y A x 1 a ) 1 b . Ax_1^ax_2^b = y \\ x_2^b = \frac{y}{Ax_1^a} \\ x_2 = \left(\frac{y}{Ax_1^a} \right)^{\frac{1}{b}}. Ax1ax2b=yx2b=Ax1ayx2=(Ax1ay)b1.
    第二步:将 x 2 x_2 x2 代入优化目标中
    c ( w 1 , w 2 , y ) = w 1 x 1 + w 2 x 2 = w 1 x 1 + w 2 ( y A x 1 a ) 1 b . \begin{aligned} c(w_1, w_2, y) &= w_1x_1 + w_2x_2 \\ &= w_1x_1 + w_2 \left(\frac{y}{Ax_1^a} \right)^{\frac{1}{b}} \end{aligned}. c(w1,w2,y)=w1x1+w2x2=w1x1+w2(Ax1ay)b1.
    第三步:对 x 1 x_1 x1 求导数,

    t ( x 1 ) = w 1 x 1 + w 2 ( y A x 1 a ) 1 b , t(x_1) = w_1x_1 + w_2 \left(\frac{y}{Ax_1^a} \right)^{\frac{1}{b}}, t(x1)=w1x1+w2(Ax1ay)b1,
    t ′ ( x 1 ) = w 1 + w 2 1 b ( y A x 1 a ) 1 b − 1 ⋅ ( y A ) ( − 1 ) ( 1 x 1 a ) 2 ⋅ a x 1 a − 1 = w 1 + w 2 1 b ( y A ) 1 b − 1 ( 1 x 1 a ) 1 b − 1 ( y A ) ( − 1 ) ( 1 x 1 a ) 2 a x 1 a − 1 = w 1 − w 2 a b ( y A ) 1 b − 1 + 1 ( x 1 − a ) 1 b − 1 + 2 x 1 a − 1 = w 1 − a b w 2 ( y A ) 1 b x 1 − a + b b . \begin{aligned} t'(x_1) &= w_1+w_2 \frac{1}{b} \left(\frac{y}{Ax_1^a} \right)^{\frac{1}{b}-1}\cdot \left(\frac{y}{A} \right) (-1)\left(\frac{1}{x_1^a} \right)^2 \cdot ax_1^{a-1} \\ &=w_1 + w_2 \frac{1}{b} \left(\frac{y}{A}\right)^{\frac{1}{b}-1}\left(\frac{1}{x_1^a} \right)^{\frac{1}{b}-1}\left(\frac{y}{A}\right) (-1) \left(\frac{1}{x_1^a} \right)^2ax_1^{a-1} \\ &= w_1-w_2\frac{a}{b} \left(\frac{y}{A} \right)^{\frac{1}{b}-1+1}\left(x_1^{-a} \right)^{\frac{1}{b}-1+2}x_1^{a-1} \\ &= w_1 - \frac{a}{b}w_2\left(\frac{y}{A} \right)^{\frac{1}{b}}x_1^{-\frac{a+b}{b}}. \end{aligned} t(x1)=w1+w2b1(Ax1ay)b11(Ay)(1)(x1a1)2ax1a1=w1+w2b1(Ay)b11(x1a1)b11(Ay)(1)(x1a1)2ax1a1=w1w2ba(Ay)b11+1(x1a)b11+2x1a1=w1baw2(Ay)b1x1ba+b.
    t ′ ( x 1 ) = 0 t'(x_1) = 0 t(x1)=0,得
    w 1 − a b w 2 ( y A ) 1 b x 1 − a + b b = 0 w 1 = a b w 2 ( y A ) 1 b x 1 − a + b b b w 1 = a w 2 ( y A ) 1 b x 1 − a + b b b w 1 a w 2 = ( y A ) 1 b x 1 − a + b b b w 1 a w 2 ( y A ) − 1 b = x 1 − a + b b 1 x 1 a + b b = b w 1 a w 2 ( y A ) − 1 b ( 1 x 1 ) a + b b = b w 1 a w 2 ( y A ) − 1 b ( 1 x 1 ) = [ b w 1 a w 2 ( y A ) − 1 b ] b a + b ( 1 x 1 ) = ( b w 1 a w 2 ) b a + b [ ( y A ) − 1 b ] b a + b ( 1 x 1 ) = ( b w 1 a w 2 ) b a + b ( y A ) − 1 a + b x 1 = 1 ( b w 1 a w 2 ) b a + b ( y A ) − 1 a + b x 1 = ( a w 2 b w 1 ) b a + b ( A y ) − 1 a + b = A − 1 a + b ( a w 2 b w 1 ) b a + b y 1 a + b . w_1 - \frac{a}{b}w_2\left(\frac{y}{A} \right)^{\frac{1}{b}}x_1^{-\frac{a+b}{b}} = 0 \\ w_1 = \frac{a}{b}w_2\left(\frac{y}{A} \right)^{\frac{1}{b}}x_1^{-\frac{a+b}{b}} \\ bw_1 = aw_2\left(\frac{y}{A} \right)^{\frac{1}{b}} x_1^{-\frac{a+b}{b}} \\ \frac{bw_1}{aw_2} = \left(\frac{y}{A} \right)^{\frac{1}{b}} x_1^{-\frac{a+b}{b}} \\ \frac{bw_1}{aw_2}\left(\frac{y}{A} \right)^{-\frac{1}{b}}=x_1^{-\frac{a+b}{b}} \\ \frac{1}{x_1^{\frac{a+b}{b}}}=\frac{bw_1}{aw_2}\left(\frac{y}{A} \right)^{-\frac{1}{b}} \\ \left(\frac{1}{x_1}\right)^{\frac{a+b}{b}}=\frac{bw_1}{aw_2}\left(\frac{y}{A} \right)^{-\frac{1}{b}} \\ \left(\frac{1}{x_1}\right)=\left[\frac{bw_1}{aw_2}\left(\frac{y}{A} \right)^{-\frac{1}{b}}\right]^{\frac{b}{a+b}} \\ \left(\frac{1}{x_1}\right)=\left(\frac{bw_1}{aw_2}\right)^{\frac{b}{a+b}}\left[\left(\frac{y}{A} \right)^{-\frac{1}{b}}\right]^{\frac{b}{a+b}} \\ \left(\frac{1}{x_1}\right)=\left(\frac{bw_1}{aw_2}\right)^{\frac{b}{a+b}} \left(\frac{y}{A} \right)^{-\frac{1}{a+b}} \\ x_1=\frac{1}{\left(\frac{bw_1}{aw_2}\right)^{\frac{b}{a+b}} \left(\frac{y}{A} \right)^{-\frac{1}{a+b}}} \\ x_1 = \left(\frac{aw_2}{bw_1} \right)^{\frac{b}{a+b}} \left(\frac{A}{y} \right)^{-\frac{1}{a+b}} =A^{-\frac{1}{a+b}} \left(\frac{aw_2}{bw_1} \right)^{\frac{b}{a+b}}y^{\frac{1}{a+b}}. w1baw2(Ay)b1x1ba+b=0w1=baw2(Ay)b1x1ba+bbw1=aw2(Ay)b1x1ba+baw2bw1=(Ay)b1x1ba+baw2bw1(Ay)b1=x1ba+bx1ba+b1=aw2bw1(Ay)b1(x11)ba+b=aw2bw1(Ay)b1(x11)=[aw2bw1(Ay)b1]a+bb(x11)=(aw2bw1)a+bb[(Ay)b1]a+bb(x11)=(aw2bw1)a+bb(Ay)a+b1x1=(aw2bw1)a+bb(Ay)a+b11x1=(bw1aw2)a+bb(yA)a+b1=Aa+b1(bw1aw2)a+bbya+b1.
    因此
    x 1 ( w 1 , w 2 , y ) = A − 1 a + b ( a w 2 b w 1 ) b a + b y 1 a + b . x_1(w_1, w_2, y) =A^{-\frac{1}{a+b}} \left(\frac{aw_2}{bw_1} \right)^{\frac{b}{a+b}}y^{\frac{1}{a+b}}. x1(w1,w2,y)=Aa+b1(bw1aw2)a+bbya+b1.
    x 1 x_1 x1 带回 x 2 x_2 x2 中,得
    x 2 = ( y A x 1 a ) 1 b = y 1 b A − 1 b x 1 − a b = y 1 b A − 1 b [ A − 1 a + b ( a w 2 b w 1 ) b a + b y 1 a + b ] − a b = y 1 b A − 1 b A a b ( a + b ) ( a w 2 b w 1 ) − a a + b y − a b ( a + b ) = A − 1 a + b ( a w 2 b w 1 ) − a a + b y 1 a + b . \begin{aligned} x_2 &= \left(\frac{y}{Ax_1^a} \right)^{\frac{1}{b}} \\ &= y^{\frac{1}{b}}A^{-\frac{1}{b}} x_1^{-\frac{a}{b}} \\ &= y^{\frac{1}{b}}A^{-\frac{1}{b}} \left[A^{-\frac{1}{a+b}} \left(\frac{aw_2}{bw_1} \right)^{\frac{b}{a+b}}y^{\frac{1}{a+b}} \right]^{-\frac{a}{b}} \\ &= y^{\frac{1}{b}}A^{-\frac{1}{b}} A^{\frac{a}{b(a+b)}} \left(\frac{aw_2}{bw_1} \right)^{-\frac{a}{a+b}} y^{-\frac{a}{b(a+b)}} \\ &= A^{-\frac{1}{a+b}} \left(\frac{aw_2}{bw_1} \right)^{-\frac{a}{a+b}} y^{\frac{1}{a+b}}. \end{aligned} x2=(Ax1ay)b1=yb1Ab1x1ba=yb1Ab1[Aa+b1(bw1aw2)a+bbya+b1]ba=yb1Ab1Ab(a+b)a(bw1aw2)a+bayb(a+b)a=Aa+b1(bw1aw2)a+baya+b1.
    因此
    x 2 ( w 1 , w 2 , y ) = A − 1 a + b ( a w 2 b w 1 ) − a a + b y 1 a + b . x_2(w_1, w_2, y) = A^{-\frac{1}{a+b}} \left(\frac{aw_2}{bw_1} \right)^{-\frac{a}{a+b}} y^{\frac{1}{a+b}}. x2(w1,w2,y)=Aa+b1(bw1aw2)a+baya+b1.
    第四步:将 x 1 x_1 x1 x 2 x_2 x2 代入原成本函数中
    c ( w 1 , w 2 , y ) = w 1 x 1 + w 2 x 2 = w 1 A − 1 a + b ( a w 2 b w 1 ) b a + b y 1 a + b + w 2 A − 1 a + b ( a w 2 b w 1 ) − a a + b y 1 a + b = A − 1 a + b ( a b ) b a + b w 2 b a + b w 1 a a + b y 1 a + b + A − 1 a + b ( a b ) − a a + b w 2 b a + b w 1 a a + b y 1 a + b = A − 1 a + b w 1 a a + b w 2 b a + b y 1 a + b [ ( a b ) b a + b + ( a b ) − a a + b ] . \begin{aligned} c(w_1, w_2, y) &= w_1x_1+w_2x_2 \\ &= w_1A^{-\frac{1}{a+b}} \left(\frac{aw_2}{bw_1} \right)^{\frac{b}{a+b}}y^{\frac{1}{a+b}} +w_2A^{-\frac{1}{a+b}} \left(\frac{aw_2}{bw_1} \right)^{-\frac{a}{a+b}} y^{\frac{1}{a+b}} \\ &=A^{-\frac{1}{a+b}}\left(\frac{a}{b}\right)^{\frac{b}{a+b}}w_2^{\frac{b}{a+b}}w_1^{\frac{a}{a+b}}y^{\frac{1}{a+b}}+A^{-\frac{1}{a+b}}\left(\frac{a}{b} \right)^{-\frac{a}{a+b}}w_2^{\frac{b}{a+b}}w_1^{\frac{a}{a+b}} y^{\frac{1}{a+b}}\\ &=A^{-\frac{1}{a+b}}w_1^{\frac{a}{a+b}}w_2^{\frac{b}{a+b}}y^{\frac{1}{a+b}} \left[\left(\frac{a}{b}\right)^{\frac{b}{a+b}} +\left(\frac{a}{b}\right)^{-\frac{a}{a+b}}\right]. \\ \end{aligned} c(w1,w2,y)=w1x1+w2x2=w1Aa+b1(bw1aw2)a+bbya+b1+w2Aa+b1(bw1aw2)a+baya+b1=Aa+b1(ba)a+bbw2a+bbw1a+baya+b1+Aa+b1(ba)a+baw2a+bbw1a+baya+b1=Aa+b1w1a+baw2a+bbya+b1[(ba)a+bb+(ba)a+ba].
    通常:令 A = 1 A=1 A=1 a + b = 1 a+b=1 a+b=1,则上式简化为:
    c ( w 1 , w 2 , y ) = K w 1 a w 2 1 − a y , c(w_1,w_2,y)=Kw_1^aw_2^{1-a}y, c(w1,w2,y)=Kw1aw21ay,
    其中 K = a − a ( 1 − a ) a − 1 K=a^{-a}(1-a)^{a-1} K=aa(1a)a1

  • 莱昂提夫技术
    f ( x 1 , x 2 ) = min ⁡ { a x 1 , b x 2 } . f(x_1,x_2)=\min\{ax_1,bx_2\}. f(x1,x2)=min{ax1,bx2}.
    c ( w 1 , w 2 , y ) = w 1 y a + w 2 y b = y ( w 1 a + w 2 b ) . c(w_1,w_2,y)=\frac{w_1y}{a}+\frac{w_2y}{b}=y\left(\frac{w_1}{a}+\frac{w_2}{b}\right). c(w1,w2,y)=aw1y+bw2y=y(aw1+bw2).

  • CES技术
    min ⁡ w 1 x 1 + w 2 x 2 s.t.   x 1 ρ + x 2 ρ = y ρ \min w_1x_1+w_2x_2 \\ \textbf{s.t. } x_1^{\rho} + x_2^{\rho} = y^{\rho} minw1x1+w2x2s.t. x1ρ+x2ρ=yρ
    从 CES 生 产 函 数 推 导 成 本 函 数 {\color{red}从\text{CES}生产函数推导成本函数} CES
    第一步:从约束条件中得到 x 2 x_2 x2 的表达式
    x 1 ρ + x 2 ρ = y ρ x 2 ρ = y ρ − x 1 ρ x 2 = ( y ρ − x 1 ρ ) 1 ρ x_1^{\rho} + x_2^{\rho} = y^{\rho} \\ x_2^{\rho} = y^{\rho} - x_1^{\rho} \\ x_2 = \left(y^{\rho} - x_1^{\rho} \right)^{\frac{1}{\rho}} \\ x1ρ+x2ρ=yρx2ρ=yρx1ρx2=(yρx1ρ)ρ1
    第二步:将 x 2 x_2 x2 代入到优化函数中
    min ⁡ w 1 x 1 + w 2 ( y ρ − x 1 ρ ) 1 ρ \min w_1x_1 + w_2\left(y^{\rho} - x_1^{\rho} \right)^{\frac{1}{\rho}} minw1x1+w2(yρx1ρ)ρ1
    第三步:对优化函数求导数,得极值点

    t ( x 1 ) = w 1 x 1 + w 2 ( y ρ − x 1 ρ ) 1 ρ t(x_1) = w_1x_1 + w_2\left(y^{\rho} - x_1^{\rho} \right)^{\frac{1}{\rho}} t(x1)=w1x1+w2(yρx1ρ)ρ1
    t ′ ( x 1 ) = w 1 + w 2 1 ρ ( y ρ − x 1 ρ ) 1 ρ − 1 ( − ρ x 1 ρ − 1 ) = w 1 − w 2 x 1 ρ − 1 ( y ρ − x 1 ρ ) 1 ρ − 1 t'(x_1) = w_1 + w_2\frac{1}{\rho}\left(y^{\rho}-x_1^{\rho} \right)^{\frac{1}{\rho}-1}\left(-\rho x_1^{\rho-1}\right)=w_1-w_2x_1^{\rho-1}\left(y^{\rho}-x_1^{\rho} \right)^{\frac{1}{\rho}-1} t(x1)=w1+w2ρ1(yρx1ρ)ρ11(ρx1ρ1)=w1w2x1ρ1(yρx1ρ)ρ11
    t ′ ( x 1 ) = 0 t'(x_1)=0 t(x1)=0,得
    w 1 − w 2 x 1 ρ − 1 ( y ρ − x 1 ρ ) 1 ρ − 1 = 0 w 1 = w 2 x 1 ρ − 1 1 ( y ρ − x 1 ρ ) ρ − 1 ρ w 1 ( y ρ − x 1 ρ ) ρ − 1 ρ = w 2 x 1 ρ − 1 w 1 ρ ρ − 1 ( y ρ − x 1 ρ ) = w 2 ρ ρ − 1 x 1 ρ w 1 ρ ρ − 1 x 1 ρ + w 2 ρ ρ − 1 x 1 ρ = w 1 ρ ρ − 1 y ρ x 1 ρ = w 1 ρ ρ − 1 w 1 ρ ρ − 1 + w 2 ρ ρ − 1 y ρ x 1 = [ w 1 ρ ρ − 1 w 1 ρ ρ − 1 + w 2 ρ ρ − 1 ] 1 ρ y . w_1-w_2x_1^{\rho-1}\left(y^{\rho}-x_1^{\rho} \right)^{\frac{1}{\rho}-1} = 0 \\ w_1 = w_2 x_1^{\rho-1} \frac{1}{\left(y^{\rho}-x_1^{\rho} \right)^{\frac{\rho-1}{\rho}}} \\ w_1\left(y^{\rho}-x_1^{\rho} \right)^{\frac{\rho-1}{\rho}} = w_2x_1^{\rho-1} \\ w_1^{\frac{\rho}{\rho-1}}\left(y^{\rho}-x_1^{\rho} \right) = w_2^{\frac{\rho}{\rho-1}} x_1^{\rho} \\ w_1^{\frac{\rho}{\rho-1}} x_1^{\rho} + w_2^{\frac{\rho}{\rho-1}} x_1^{\rho} = w_1^{\frac{\rho}{\rho-1}} y^{\rho} \\ x_1^{\rho} = \frac{w_1^{\frac{\rho}{\rho-1}}}{w_1^{\frac{\rho}{\rho-1}}+w_2^{\frac{\rho}{\rho-1}}} y^{\rho} \\ x_1 = \left[\frac{w_1^{\frac{\rho}{\rho-1}}}{w_1^{\frac{\rho}{\rho-1}}+w_2^{\frac{\rho}{\rho-1}}} \right]^{\frac{1}{\rho}}y. w1w2x1ρ1(yρx1ρ)ρ11=0w1=w2x1ρ1(yρx1ρ)ρρ11w1(yρx1ρ)ρρ1=w2x1ρ1w1ρ1ρ(yρx1ρ)=w2ρ1ρx1ρw1ρ1ρx1ρ+w2ρ1ρx1ρ=w1ρ1ρyρx1ρ=w1ρ1ρ+w2ρ1ρw1ρ1ρyρx1=[w1ρ1ρ+w2ρ1ρw1ρ1ρ]ρ1y.

    x 1 ( w 1 , w 2 , y ) = [ w 1 ρ ρ − 1 w 1 ρ ρ − 1 + w 2 ρ ρ − 1 ] 1 ρ y . x_1(w_1,w_2,y)= \left[\frac{w_1^{\frac{\rho}{\rho-1}}}{w_1^{\frac{\rho}{\rho-1}}+w_2^{\frac{\rho}{\rho-1}}} \right]^{\frac{1}{\rho}}y. x1(w1,w2,y)=[w1ρ1ρ+w2ρ1ρw1ρ1ρ]ρ1y.

第四步:将 x 1 x_1 x1 代入到 x 2 x_2 x2 的表达式中
x 2 = ( y ρ − x 1 ρ ) 1 ρ = ( y ρ − [ [ w 1 ρ ρ − 1 w 1 ρ ρ − 1 + w 2 ρ ρ − 1 ] 1 ρ y ] ρ ) 1 ρ = [ y ρ − w 1 ρ ρ − 1 w 1 ρ ρ − 1 + w 2 ρ ρ − 1 y ρ ] 1 ρ = y [ w 2 ρ ρ − 1 w 1 ρ ρ − 1 + w 2 ρ ρ − 1 ] . \begin{aligned} x_2 &= \left(y^{\rho} - x_1^{\rho} \right)^{\frac{1}{\rho}} \\ &=\left(y^{\rho} - \left[ \left[\frac{w_1^{\frac{\rho}{\rho-1}}}{w_1^{\frac{\rho}{\rho-1}}+w_2^{\frac{\rho}{\rho-1}}} \right]^{\frac{1}{\rho}}y \right]^{\rho} \right)^{\frac{1}{\rho}} \\ &= \left[y^{\rho}-\frac{w_1^\frac{\rho}{\rho-1}}{w_1^\frac{\rho}{\rho-1}+w_2^\frac{\rho}{\rho-1}} y^{\rho} \right]^{\frac{1}{\rho}} \\ &= y\left[\frac{w_2^\frac{\rho}{\rho-1}}{w_1^\frac{\rho}{\rho-1}+w_2^\frac{\rho}{\rho-1}} \right]. \end{aligned} x2=(yρx1ρ)ρ1=yρ[w1ρ1ρ+w2ρ1ρw1ρ1ρ]ρ1yρρ1=[yρw1ρ1ρ+w2ρ1ρw1ρ1ρyρ]ρ1=y[w1ρ1ρ+w2ρ1ρw2ρ1ρ].

x 2 ( w 1 , w 2 , y ) = y [ w 2 ρ ρ − 1 w 1 ρ ρ − 1 + w 2 ρ ρ − 1 ] . x_2(w_1, w_2, y) = y\left[\frac{w_2^\frac{\rho}{\rho-1}}{w_1^\frac{\rho}{\rho-1}+w_2^\frac{\rho}{\rho-1}} \right]. x2(w1,w2,y)=y[w1ρ1ρ+w2ρ1ρw2ρ1ρ].
第五步:将 x 1 x_1 x1 x 2 x_2 x2 代回成本函数中
c ( w 1 , w 2 , y ) = w 1 x 1 ( w 1 , w 2 , y ) + w 2 x 2 ( w 1 , w 2 , y ) = w 1 [ w 1 ρ ρ − 1 w 1 ρ ρ − 1 + w 2 ρ ρ − 1 ] 1 ρ y + w 2 [ w 2 ρ ρ − 1 w 1 ρ ρ − 1 + w 2 ρ ρ − 1 ] y = [ w 1 ρ w 1 ρ ρ − 1 w 1 ρ ρ − 1 + w 2 ρ ρ − 1 ] 1 ρ y + [ w 2 w 2 ρ ρ − 1 w 1 ρ ρ − 1 + w 2 ρ ρ − 1 ] y = [ w 1 ρ 2 ρ − 1 w 1 ρ ρ − 1 + w 2 ρ ρ − 1 ] 1 ρ y + [ w 2 2 ρ − 1 ρ − 1 w 1 ρ ρ − 1 + w 2 ρ ρ − 1 ] y . \begin{aligned} c(w_1,w_2, y) &= w_1x_1(w_1,w_2,y)+w_2x_2(w_1,w_2,y) \\ &= w_1 \left[\frac{w_1^{\frac{\rho}{\rho-1}}}{w_1^{\frac{\rho}{\rho-1}}+w_2^{\frac{\rho}{\rho-1}}} \right]^{\frac{1}{\rho}}y + w_2\left[\frac{w_2^\frac{\rho}{\rho-1}}{w_1^\frac{\rho}{\rho-1}+w_2^\frac{\rho}{\rho-1}} \right]y \\ &= \left[w_1^{\rho}\frac{w_1^{\frac{\rho}{\rho-1}}}{w_1^{\frac{\rho}{\rho-1}}+w_2^{\frac{\rho}{\rho-1}}} \right]^{\frac{1}{\rho}}y + \left[w_2 \frac{w_2^\frac{\rho}{\rho-1}}{w_1^\frac{\rho}{\rho-1}+w_2^\frac{\rho}{\rho-1}} \right]y \\ &= \left[\frac{w_1^{\frac{\rho^2}{\rho-1}}}{w_1^{\frac{\rho}{\rho-1}}+w_2^{\frac{\rho}{\rho-1}}} \right]^{\frac{1}{\rho}}y + \left[\frac{w_2^\frac{2\rho-1}{\rho-1}}{w_1^\frac{\rho}{\rho-1}+w_2^\frac{\rho}{\rho-1}} \right]y. \end{aligned} c(w1,w2,y)=w1x1(w1,w2,y)+w2x2(w1,w2,y)=w1[w1ρ1ρ+w2ρ1ρw1ρ1ρ]ρ1y+w2[w1ρ1ρ+w2ρ1ρw2ρ1ρ]y=[w1ρw1ρ1ρ+w2ρ1ρw1ρ1ρ]ρ1y+[w2w1ρ1ρ+w2ρ1ρw2ρ1ρ]y=w1ρ1ρ+w2ρ1ρw1ρ1ρ2ρ1y+w1ρ1ρ+w2ρ1ρw2ρ12ρ1y.
( 有 问 题 ) {\color{red}(有问题)}

参考

  1. 课程老师的PPT,就不外传了(很简略)
  2. 百度文库:zdwdyx666,边际替代率
  3. 百度百科:导数表
  4. 知乎:黄知之,函数的凹凸性漫谈
  5. CSDN:AIHUBEI,二元函数判断凹凸性
  6. CSDN:馋学习的身子,二元函数凹凸性判定及最值定理
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值