盘点 Python 10 大常用数据结构(上篇)

Python实战社群

Java实战社群

长按识别下方二维码,按需求添加

扫码关注添加客服

进Python社群▲

扫码关注添加客服

进Java社群

作者丨zhenguo 

来源丨Python与算法社区

Python 常用数据结构

学习目的

这个专题,尽量使用最精简的文字,借助典型案例盘点Python常用的数据结构。

如果你还处于Python入门阶段,通常只需掌握listtuplesetdict这类数据结构,做到灵活使用即可。

然而,随着学习的深入,平时遇到实际场景变复杂,很有必要去了解Python内置的更加强大的数据结构dequeheapqCounterOrderedDictdefaultDictChainMap,掌握它们,往往能让你少写一些代码且能更加高效的实现功能。

学习目标

学习数据结构第一阶段:掌握它们的基本用法,使用它们解决一些基本问题;

学习第二阶段:知道何种场景选用哪种最恰当的数据结构,去解决题问题;

学习第三阶段:了解内置数据结构的背后源码实现,与《算法和数据结构》这门学问里的知识联系起来,打通任督二脉。

下面根据定义的这三个阶段,总结以下10种最常用的数据结构:

1 list

基本用法 废话不多说,在前面单独有一个专题详述了list的使用列表专题

使用场景 list 使用在需要查询、修改的场景,极不擅长需要频繁插入、删除元素的场景。

实现原理 list对应数据结构的线性表,列表长度在初始状态时无需指定,当插入元素超过初始长度后再启动动态扩容,删除时尤其位于列表开始处元素,时间复杂度为O(n)

2 tuple

元组是一类不允许添加删除元素的特殊列表,也就是一旦创建后续决不允许增加、删除、修改。

基本用法 元组大量使用在打包和解包处,如函数有多个返回值时打包为一个元组,赋值到等号左侧变量时解包。

In [22]: t=1,2,3                                         
In [23]: type(t)                              
Out[23]: tuple

实际创建一个元组实例

使用场景 如果非常确定你的对象后面不会被修改,则可以大胆使用元组。为什么?因为相比于list, tuple实例更加节省内存,这点尤其重要。

In [24]: from sys import getsizeof                                              

In [25]: getsizeof(list())                                                      
Out[25]: 72 # 一个list实例占用72个字节

In [26]: getsizeof(tuple())                                                     
Out[26]: 56 # 一个tuple实例占用56个字节

所以创建100个实例,tuple能节省1K多字节。

3 set

基本用法 set是一种里面不能含有重复元素的数据结构,这种特性天然的使用于列表的去重。

In [27]: a=[3,2,5,2,5,3]                                                        

In [28]: set(a)                                                                 
Out[28]: {2, 3, 5}

除此之外,还有知道set结构可用于两个set实例的求交集、并集、差集等操作。

In [29]: a = {2,3,5}                                                            

In [30]: b = {3,4,6,2}                                                          

In [31]: a.interp(b) # 求交集                                                      
Out[31]: {2, 3}

使用场景 如果只是想缓存某些元素值,且要求元素值不能重复时,适合选用此结构。并且set内允许增删元素,且效率很高。

实现原理 set在内部将值哈希为索引,然后按照索引去获取数据,因此删除、增加、查询元素效果都很高。

4 dict

基本用法 dict 是Python中使用最频繁的数据结构之一,字典创建由通过dict函数、{}写法、字典生成式等,增删查元素效率都很高。

d = {'a':1,'b':2} # {}创建字典

# 列表生成式
In [38]: d = {a:b for a,b in zip(['a','b'],[1,2])}                              
In [39]: d                                                                      
Out[39]: {'a': 1, 'b': 2}

使用场景 字典尤其适合在查询多的场景,时间复杂度为O(1). 如leetcode第一题求解两数之和时,就会使用到dict的O(1)查询时间复杂度。

同时,Python类中属性值等信息也都是缓存在__dict__这个字典型数据结构中。

但是值得注意,dict占用字节数是list、tuple的3、4倍,因此对内存要求苛刻的场景要慎重考虑。

In [40]: getsizeof(dict())                                                      
Out[40]: 248

实现原理 字典是一种哈希表,同时保存了键值对。

以上4种数据结构相信大家都已经比较熟悉,因此我言简意赅的介绍一遍。接下来再详细的介绍下面6种数据结构及各自使用场景,会列举更多的例子。

5 deque

6 Counter

7 OrderedDict

8 heapq

9 defaultdict

10 ChainMap

程序员专栏 扫码关注填加客服 长按识别下方二维码进群

近期精彩内容推荐:   955 不加班的公司名单:955.WLB 终于稳了!2020年8月程序员工资最新统计 盘点 Python 10 大常用数据结构(上篇) 理解Java反射的正确姿势

在看点这里好文分享给更多人↓↓
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值