全网顶尖,毫不夸张的说这份斯坦福大学机器学习教程中文笔记,能让你机器学习从入门到精通

182 篇文章 117 订阅
174 篇文章 7 订阅

人工智能

人工智能,无疑是现在最火的概念,从AlphaGo打败李世石后,全世界掀起了一股人工智能的浪潮。我们在生活中的各个角落,都能感受到一个崭新的奇点时代即将来临

人工智能充气鞋垫

人工智能马桶

(可以随拉屎的心情变换音乐)

OMG!只有我们想不到,没有神奇的人工智能做不到的事情!从脚下的鞋垫到马桶全都装备了人工智能,以后如果人工智能反攻人类,是不是就要光着脚、马桶都不能上了!

然而值得指出的是,现在甚嚣尘上的好几个概念,包括人工智能、机器学习、深度学习和神经网络,其实并不是完全等价的。严格说起来,它们是一个越来越小的关系,

那么问题来了,对于不是学习计算机的业外人士,当有人跟你高谈阔论人工智能时,如何判断他做的到底是机器学习(Machine Learning)还是人工智能(Artificial Intelligence)呢?

这里可以为大家介绍一种简单实用的办法,那就是让他发送一份自己平时的工作截图,如果是类似下图的话,那么就是机器学习(大概率也是深度学习)

而如果是类似下图的

那么正如图中所显示的,他从事的是人工智能

作为一名名义上从事着属于机器学习那部分人工智能的搬砖工人,在经历了一线的机器学习实习和研究之后,LR深深的为这门学科所感染和打动。所以LR发自肺腑的在此提议:人人都应该学习机器学习,这门学科饱含着超越狭隘的计算机科学的人生哲理与智慧,是每一个当代青年人的必修课。

在这里笔者给大家推荐一份斯坦福大学机器学习教程中文笔记,极致经典,堪称零基础小白入门首选佳作。对应视频教程已上传于 https://www.coursera.org/course/ml

本书提供了一个广泛的介绍机器学习、数据挖掘、统计模式识别的章节。主题包括:
(一)监督学习(参数/非参数算法,支持向量机,核函数,神经网络)。
(二)无监督学习
(聚类,降维,推荐系统,深入学习推荐)。
(三)在机器学习的最佳实践(偏差/方差理论;在机器学习和人工智能创新过程)。本课程还将使用大量的案例研究,您还将学习如何运用学习算法构建智能机器人(感知,控制),文本的理解(Web 搜索,反垃圾邮件),计
算机视觉,医疗信息,音频,数据挖掘,和其他领域。

目录
朋友们如果有需要全套《斯坦福大学机器学习教程中文笔记 》PDF,扫描下方二维码免费领取(如遇扫码问题,评论区留言领取哦)~
在这里插入图片描述

第一周

一、 引言(Introduction)

1.1 欢迎

1.2 机器学习是什么?

1.3 监督学习

1.4 无监督学习

二、单变量线性回归**(Linear Regression with One Variable**)

2.1 模型表示

2.2 代价函数

2.3 代价函数的直观理解I

2.4 代价函数的直观理解II

2.5 梯度下降

2.6 梯度下降的直观理解

2.7 梯度下降的线性回归

2.8 接下来的内容

三、线性代数回顾(Linear Algebra Review)

3.1 矩阵和向量

3.2 加法和标量乘法

3.3 矩阵向量乘法

3.4 矩阵乘法

3.5 矩阵乘法的性质

3.6 逆、转置

第二周

四、多变量线性回归(Linear Regression with Multiple Variables)

4.1 多维特征

4.2 多变量梯度下降

4.3 梯度下降法实践1-特征缩放

4.4 梯度下降法实践2-学习率

4.5 特征和多项式回归

4.6 正规方程

4.7 正规方程及不可逆性(选修)

五、Octave教程(Octave Tutorial)

5.1 基本操作

5.2 移动数据

5.3 计算数据

5.4 绘图数据

5.5 控制语句:forwhileif语句

5.6 向量化 88

5.7 工作和提交的编程练习

朋友们如果有需要全套《斯坦福大学机器学习教程中文笔记 》PDF,扫描下方二维码免费领取(如遇扫码问题,评论区留言领取哦)~
在这里插入图片描述

第三周

六、逻辑回归(Logistic Regression)

6.1 分类问题

6.2 假说表示

6.3 判定边界

6.4 代价函数

6.5 简化的成本函数和梯度下降

6.6 高级优化

6.7 多类别分类:一对多

七、正则化(Regularization)

7.1 过拟合的问题

7.2 代价函数

7.3 正则化线性回归

7.4 正则化的逻辑回归模型

第四周

第八、神经网络:表述(Neural Networks: Representation)

8.1 非线性假设

8.2 神经元和大脑

8.3 模型表示1

8.4 模型表示2

8.5 样本和直观理解1

8.6 样本和直观理解II

8.7 多类分类

第五周

九、神经网络的学习(Neural Networks: Learning)

9.1 代价函数

9.2 反向传播算法

9.3 反向传播算法的直观理解

9.4 实现注意:展开参数

9.5 梯度检验

9.6 随机初始化

9.7 综合起来

9.8 自主驾驶

第六周

十、应用机器学习的建议(Advice for Applying Machine Learning)

10.1 决定下一步做什么

10.2 评估一个假设

10.3 模型选择和交叉验证集

10.4 诊断偏差和方差

10.5 正则化和偏差/方差

10.6 学习曲线

10.7 决定下一步做什么

十一、机器学习系统的设计(Machine Learning System Design)

11.1 首先要做什么

11.2 误差分析

11.3 类偏斜的误差度量

11.4 查准率和查全率之间的权衡

11.5 机器学习的数据

朋友们如果有需要全套《斯坦福大学机器学习教程中文笔记 》PDF,扫描下方二维码免费领取(如遇扫码问题,评论区留言领取哦)~
在这里插入图片描述

第7周

十二、支持向量机(Support Vector Machines)

12.1 优化目标

12.2 大边界的直观理解

12.3 大边界分类背后的数学(选修)

12.4 核函数1

12.5 核函数2

12.6 使用支持向量机

第8周

十三、聚类(Clustering)

13.1 无监督学习:简介

13.2 K-均值算法

13.3 优化目标

13.4 随机初始化

13.5 选择聚类数

十四、降维(Dimensionality Reduction)

14.1 动机一:数据压缩

14.2 动机二:数据可视化

14.3 主成分分析问题

14.4 主成分分析算法

14.5 选择主成分的数量

14.6 重建的压缩表示

14.7 主成分分析法的应用建议

第九周

十五、异常检测(Anomaly Detection)

15.1 问题的动机

15.2 高斯分布

15.3 算法

15.4 开发和评价一个异常检测系统

15.5 异常检测与监督学习对比

15.6 选择特征

15.7 多元高斯分布(选修)

15.8 使用多元高斯分布进行异常检测(选修)

十六、推荐系统(Recommender Systems)

16.1 问题形式化

16.2 基于内容的推荐系统

16.3 协同过滤

16.4 协同过滤算法

16.5 向量化:低秩矩阵分解

16.6 推行工作上的细节:均值归一化

第十周

十七、大规模机器学习(Large Scale Machine Learning)

17.1 大型数据集的学习

17.2 随机梯度下降法

17.3 小批量梯度下降

17.4 随机梯度下降收敛

17.5 在线学习

17.6 映射化简和数据并行

十八、应用实例:图片文字识别(Application Example: Photo OCR)

18.1 问题描述和流程图

18.2 滑动窗口

18.3 获取大量数据和人工数据

18.4 上限分析:哪部分管道的接下去做

十九、总结(Conclusion)

19.1 总结和致谢

朋友们如果有需要全套《斯坦福大学机器学习教程中文笔记 》PDF,点赞+评论斯坦福大学机器学习教程中文笔记 ,我都会一一回复的!

  • 8
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 7
    评论
斯坦福大学机器学习的数学基础.pdf》是一本由斯坦福大学开发的机器学习教材。本书将数学基础与机器学习算法相结合,旨在向读者介绍机器学习所需的数学知识。 该书首先介绍了线性代数的基础知识。线性代数是机器学习中常用的工具,被广泛应用于数据处理和模型训练中。本书从向量、矩阵和线性变换等基本概念开始,逐步讲解了线性方程组、行列式、特征值与特征向量等重要内容,为读者提供了深入理解线性代数的基础。 接着,本书介绍了概率论和统计学的相关知识。概率论是机器学习的核心概念之一,它用于描述和解释不确定性。统计学是机器学习中的重要工具,利用统计方法对数据进行分析和建模。本书讲解了概率论的基本概念、条件概率和贝叶斯定理等内容,同时介绍了统计学中的假设检验、参数估计和回归分析等方法。 最后,本书还介绍了线性回归、逻辑回归、支持向量机等常用的机器学习算法。这些算法建立在数学基础之上,通过数学模型实现对数据的学习和预测。本书通过具体的案例分析和实践操作,让读者理解这些算法的原理和实际应用。 总之,《斯坦福大学机器学习的数学基础.pdf》是一本系统而全面的机器学习教材,涵盖了机器学习所需的数学基础知识。读者通过学习本书,将能够理解和应用机器学习算法,从而在实际问题中进行数据分析和模型构建。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员_大白

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值