RAG 开发四大痛点及解决方案

痛点1:知识缺失

知识库缺乏必要的上下文信息,导致 RAG 系统在无法找到确切答案时,可能会提供模棱两可的错误信息,而不是直接表明其无知。这种情况下,用户可能会接收到误导性的信息,从而感到沮丧。针对这一问题,有以下两种解决方案:

解决方案一:优化数据质量

“垃圾输入,垃圾输出。” 若源数据质量不佳,比如:存在相互矛盾的信息,即便是再完美的 RAG 流程也无法从劣质数据中提炼出有价值的知识。以下提出的解决方案不仅能解决这一难题,还能应对本文中提到的其他问题。高质量的数据是确保 RAG 流程顺畅运行的关键。

以下是一些常见的数据优化策略:

1. 清除噪音和无关信息:包括移除特殊字符、停用词(比如:“the”和“a”等常见词汇)以及 HTML 标签。

2. 识别并修正错误:涉及拼写错误、打字错误和语法错误。拼写检查工具和语言模型等资源对此很有帮助。

3. 去除重复数据:消除可能干扰检索过程的重复或相似记录。

解决方案二:优化提示词设计

由于知识库信息不足,系统可能会提供看似合理却错误的答案。在这种情况下,优化提示词可以显著提升系统表现。通过使用“若你不确定答案,请表明你不知道”等提示词,可以引导大模型承认其局限,并更清晰地表达不确定性。虽然这不能确保答案的绝对正确性,但在数据优化之后,设计恰当的提示词是提高系统透明度的有效手段之一。

痛点2:更相关的知识没有检索出来

在初步检索阶段知识未能被检索出来。关键的文档可能没有在检索组件给出的初步结果中,导致正确答案被遗漏,大模型因此无法提供精确的响应。研究指出:“问题的答案其实就藏在文档里,只是因为它排名不够高,所以没有被呈现给用户。”针对这一问题,有以下两种解决方案:

解决方案一:调整 chunk_size 和 similarity_top_k 超参数

在 RAG 模型中,chunk_size 和 similarity_top_k 是控制数据检索效率和准确性的两个关键参数。对这些参数的调整会影响到计算效率和信息检索质量之间的平衡。

解决方案二:Rerank 重排序

在将检索结果传递给大语言模型(LLM)之前对其进行重新排序,可以显著增强 RAG 系统的性能。LlamaIndex 的笔记揭示了有无重新排序的差别:

  1. 未经重新排序直接获取前两个节点的检索结果,导致结果不够精确。

  2. 相比之下,检索前 10 个节点并利用 CohereRerank 进行重排序,然后仅返回前两个节点,可以实现更精确的检索。

       ``import os` `from llama _ index.postprocessor.cohere _ rerank import CohereRerank` `   ``api _ key = os.environ  [  "COHERE _ API _ KEY"  ]` `cohere _ rerank = CohereRerank ( api _ key=api _ key , top _ n=2 ) # return top 2 nodes from reranker` `   ``query _ engine = index.as _ query _ engine  (` `similarity _ top _ k=10 ,  # we can set a high top _ k here to ensure maximum relevant retrieval` `node _ postprocessors= [ cohere _ rerank ],  # pass the reranker to node _ postprocessors ``)` `   ``response = query _ engine.query  ( ``  "What did Sam Altman do in this essay?" ,  `` )
    

痛点3:格式错误

输出格式不正确。当大语言模型(LLM)未能遵循以特定格式(比如:表格或列表)提取信息的指令时,我们提出了以下四种解决方案:

解决方案一:优化提示词设计

为了改善提示词并解决这一问题,可以采取以下几种策略:

  1. 明确指出格式要求。

  2. 简化指令并突出关键术语。

  3. 提供具体示例。

  4. 对提示词进行迭代并追加相关问题。

解决方案二:输出解析方法

输出解析可以用于以下目的,以确保获得期望的输出格式:

  1. 为每个提示/查询提供格式化指南。

  2. 对LLM的输出进行“解析”处理。

以下是一个使用 LangChain 输出解析模块的示例代码片段,该模块可在LlamaIndex 中应用。

   ``from llama _ index.core import VectorStoreIndex , SimpleDirectoryReader` `from llama _ index.core.output _ parsers import LangchainOutputParser` `from llama _ index.llms.openai import OpenAI` `from langchain.output _ parsers import StructuredOutputParser , ResponseSchema` `   ` `# load documents , build index` `documents = SimpleDirectoryReader  (  " .. /paul _ graham _ essay/data"  ).load _ data  (  )` `index = VectorStoreIndex.from _ documents ( documents )``   ` `# define output schema` `response _ schemas =  [` `ResponseSchema  (` `name=  "Education" ,` `description=  "Describes the author's educational experience/background." , ``) ,` `ResponseSchema  (` `name=  "Work" ,` `description=  "Describes the author's work experience/background." , ``  ) ,  ``]` `   ` `# define output parser` `lc _ output _ parser = StructuredOutputParser.from _ response _ schemas  (` `response _ schemas ``)` `output _ parser = LangchainOutputParser ( lc _ output _ parser )``   ` `# Attach output parser to LLM` `llm = OpenAI ( output _ parser=output _ parser )``   ` `# obtain a structured response` `query _ engine = index.as _ query _ engine ( llm=llm )``response = query _ engine.query  ( ``  "What are a few things the author did growing up?" ,  ``)` `print ( str ( response ))

解决方案三:Pydantic 程序

Pydantic 程序是一个多功能的框架,它能够将输入的字符串转换成结构化的 Pydantic 对象。LlamaIndex 提供了几种不同类型的 Pydantic 程序:

LLM 文本补全 Pydantic 程序:这类程序负责处理输入的文本,并将其转换成用户自定义的结构化对象,这个过程结合了文本补全 API 和输出解析。

LLM 函数调用 Pydantic 程序:这些程序通过使用 LLM 函数调用 API 来处理输入文本,并将其转换成用户指定的结构化对象。

预制 Pydantic 程序:这些程序设计用于将输入文本转换成预定义的结构化对象。

以下是一个使用 OpenAI 的 Pydantic 程序的示例代码片段:

from pydantic import BaseModel` `from typing import List` `   ``from llama _ index.program.openai import OpenAIPydanticProgram` `   ` `# Define output schema ( without docstring )``class Song  (  BaseModel  ) :` `title : str` `length _ seconds : int` `   ``   ``class Album  (  BaseModel  ) :` `name : str` `artist : str` `songs : List [ Song ]``   ` `# Define openai pydantic program` `prompt _ template _ str =  """\` `Generate an example album , with an artist and a list of songs.\` `Using the movie { movie _ name } as inspiration.\ ``"""` `program = OpenAIPydanticProgram.from _ defaults  (` `output _ cls=Album , prompt _ template _ str=prompt _ template _ str , verbose= True ``)` `   ` `# Run program to get structured output` `output = program  (` `movie _ name=  "The Shining" , description=  "Data model for an album." `` )

**解决方案四:**OpenAI JSON 模式

通过OpenAI的 JSON 模式,我们可以将`response_format`设置为`{ “type”: “json_object” }`,从而激活响应的 JSON 模式。当启用 JSON 模式后,大模型将被限制仅生成可以解析为有效 JSON 对象的字符串。JSON 模式确保了输出格式的强制性,但它并不支持根据特定模式进行验证。

痛点4:输出不完整

回答缺失完整性。虽然部分答复没有错误,但它们并未包含所有必要的细节,即便这些信息在上下文中是可获取的。比如:当有人提问:“文档A、B和C中讨论的主要议题是什么?”为了确保回答的完整性,单独对每份文档进行查询可能更为有效。

解决方案一:查询变换

在最初的 RAG 方法中,比较类型的问题表现尤为不佳。提升 RAG 推理能力的一个有效方法是引入查询理解层——在实际将查询向量存入存储之前进行查询变换。以下是四种不同的查询变换方法:

1. 路由:保留原始查询,并识别出与之相关的合适工具子集。随后,将这些工具指定为合适的选项。

2. 查询重写:保留选定的工具,但以不同方式重新构建查询,以便在同一工具集中应用。

3. 子问题分解:将查询拆分为几个更小的问题,每个问题针对不同的工具,由其元数据来决定。

4. ReAct Agent 工具选择:基于原始查询,确定使用的工具,并制定在该工具上运行的特定查询。

请参考以下示例代码片段,了解如何应用 HyDE(假设文档嵌入)这一查询重写技术。给定一个自然语言查询,首先生成一个假设文档/答案。接着,使用这个假设文档进行嵌入搜索,而不是使用原始查询。

 `# load documents , build index` `documents = SimpleDirectoryReader  (  " .. /paul _ graham _ essay/data"  ).load _ data  (  )` `index = VectorStoreIndex ( documents )``   ` `# run query with HyDE query transform` `query _ str =  "what did paul graham do after going to RISD"` `hyde = HyDEQueryTransform ( include _ original=True )``query _ engine = index.as _ query _ engine  (  )` `query _ engine = TransformQueryEngine ( query _ engine , query _ transform=hyde )``   ``response = query _ engine.query ( query _ str )``print ( response )`

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

RAG,即Retrieval-Augmented Generation,是一种结合了信息检索和生成模型的框架。它通过检索技术增强语言模型生成内容的能力。RAG模型的开发流程大致可以分为以下几个步骤: 1. 数据收集与预处理:首先需要收集大量的文本数据,并对这些数据进行预处理,如分词、去除停用词、标注等,以便用于训练模型。 2. 构建检索系统:在RAG模型中,需要一个有效的信息检索系统。这通常涉及到构建索引库,该库包含用于检索的文档集合。索引的构建可能涉及向量化文档内容,并应用一些检索算法(例如TF-IDF、BM25或更高级的嵌入式检索算法)。 3. 训练语言模型:使用预处理后的数据,训练一个语言生成模型,如BERT、GPT等。这个模型将用来生成问题的回答,或者基于检索到的信息生成新的文本。 4. 集成检索与生成:将训练好的语言模型与检索系统结合起来,生成时模型不仅依赖于训练时的知识,还能实时检索到最新的信息,并利用这些信息来增强生成的文本。 5. 模型优化:通过结合检索系统和生成模型后,可能需要针对特定应用场景进一步优化模型性能。这可能包括调整检索算法的参数,或者对生成模型进行微调等。 6. 评估与测试:对集成后的模型进行评估和测试,确保其在实际应用中能够准确、有效地回答问题或生成相关内容。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值