介绍
本文将介绍如何利用 DeepSeek API、LangGraph 和 Agent Chat UI,快速构建一个本地运行的智能助手。通过本文的指导,你将学会如何启动 LangGraph、部署 Agent Chat UI,并接入 DeepSeek API,最终打造一个功能强大且完全本地化的个人助手。无论你是开发者还是技术爱好者,都可以轻松上手,享受本地化智能助手带来的便利。
环境准备
- conda
- Python >= 3.11
# 使用conda创建python环境
conda create -n langgraph python=3.12
# 激活环境
conda activate langgraph
# 下载依赖
pip install langchain-core langgraph
pip install "langgraph-cli[inmem]" --upgrade
DeepSeek
访问DeepSeek开放平台 https://platform.deepseek.com/ ,刚注册的用户会送几块钱额度。也可以充值。api调用费用很低。
进入https://platform.deepseek.com/api_keys 创建API key。
注意:API Key需要保密,记得不要提交到GitHub哦。
LangGraph
下载一个LangGraph Template项目
git clone https://github.com/langchain-ai/new-langgraph-project.git
修改配置文件
cp .env.example .env
因为我们使用的是DeepSeek API,所以需要配置 DEEPSEEK_API_KEY(上一步创建的DeepSeek API Key)
# To separate your traces from other application
LANGSMITH_PROJECT=new-agent
# The following depend on your selected configuration
## LLM choice:
# ANTHROPIC_API_KEY=....
# FIREWORKS_API_KEY=...
# OPENAI_API_KEY=...
DEEPSEEK_API_KEY=your-deepseek-api-key
修改代码
src/agent/state.py
from __future__ import annotations
from typing_extensions import TypedDict
from dataclasses import dataclass
from langchain_core.messages import AnyMessage
from langgraph.graph.message import add_messages
from typing import Annotated
@dataclass
class State(TypedDict):
messages: Annotated[list[AnyMessage], add_messages]
src/agent/configuration.py
"""Define the configurable parameters for the agent."""
from __future__ import annotations
from dataclasses import dataclass, fields
from typing import Optional
from langchain_core.runnables import RunnableConfig
@dataclass(kw_only=True)
class Configuration:
model_name: str = "deepseek-chat"
@classmethod
def from_runnable_config(
cls, config: Optional[RunnableConfig] = None
) -> Configuration:
"""Create a Configuration instance from a RunnableConfig object."""
configurable = (config.get("configurable") or {}) if config else {}
_fields = {f.name for f in fields(cls) if f.init}
return cls(**{k: v for k, v in configurable.items() if k in _fields})
src/agent/graph.py
from typing import Any, Dict
from langchain_core.runnables import RunnableConfig
from langgraph.graph import StateGraph
from langchain_deepseek import ChatDeepSeek
from agent.configuration import Configuration
from agent.state import State
model = ChatDeepSeek(
model="deepseek-chat",
temperature=0,
max_tokens=None,
timeout=None,
max_retries=2,
)
def call_model(state, config):
response = model.invoke(state["messages"])
# We return a list, because this will get added to the existing list
return {"messages": [response]}
# Define a new graph
workflow = StateGraph(State, config_schema=Configuration)
# Add the node to the graph
workflow.add_node("call_model", call_model)
# Set the entrypoint as `call_model`
workflow.add_edge("__start__", "call_model")
# Compile the workflow into an executable graph
graph = workflow.compile()
graph.name = "New Graph" # This defines the custom name in LangSmith
接下来就可以启动项目了:
# 安装依赖
pip install -e .
#启动项目
langgraph dev
Agent Chat UI
下载agent-chat-ui项目
git clone https://github.com/langchain-ai/agent-chat-ui.git
cd agent-chat-ui
# 安装依赖
pnpm install
# 启动项目
pnpm dev
访问http://localhost:5173
,连接langgraph http://127.0.0.1:2024



总结
通过本文的详细讲解,你已经掌握了如何使用 DeepSeek API、LangGraph 和 Agent Chat UI 快速构建一个本地化的智能助手。从环境准备到 LangGraph 的启动,再到 Agent Chat UI 的部署和 DeepSeek API 的接入,每一步都为你提供了清晰的指导和实用的代码示例。
本地化智能助手的优势显而易见:它不仅能够保护你的数据隐私,还能在网络不稳定时提供稳定的服务。更重要的是,你可以根据自己的需求对助手进行定制和扩展,打造一个真正属于你的智能助手。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。