Python使用joypy绘制峰峦图案例

本文通过Python的Joypy库展示了如何在客户流失分析中使用峰峦图,对比了不同客户状态(活跃、不活跃、濒临流失、流失)在加油站频率和余额均值上的分布。Joypy是matplotlib的扩展,用于绘制堆叠和重叠的密度图,便于比较数据分布。代码示例包括多特征和单特征按类别显示的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在分析客户流失过程中,采用峰峦图对各种客户状态(活跃、不活跃、濒临流失、流失)进行特征分析,输出结果如下图所示。

  • 橘红色是客户常去加油站的所占的比率,从图上可以看出流失客户去的加油站比较散,比例趋近零的比较多,而活跃用户较稳定去某加油站。
  • 蓝灰色系列图表示客户余额均值,流失客户的余额均值在0处有些分布,而活跃用户则多在1000元左右(为了集中一张图显示,且比例均衡,则对余额取log10等计算,详见代码)。

    如何实现实现?本案例采用Python上,基于matplotlib的Joyplots工具。

Joyplots

是图的堆叠,部分重叠的密度图,就这么简单。它们是一种很好的方法来绘制数据,以直观地比较分布,特别是那些在一个维度上变化的分布(例如,随时间变化)。

  • Python 3.5+
  • numpy
  • scipy >= 0.11
  • matplotlib
  • pandas >= 0.20 Warning: compatibility with pandas >= 0.25 requires joypy >= 0.2.1
pip install joypy
Successfully installed joypy-0.2.5

多特征按类别显示代码

import pandas as pd
import time
import matplotlib.pyplot as plt
import seaborn as sns
from matplotlib import cm
import numpy as np
import joypy

filename = '客户特征分析数据集.csv'
df = pd.read_csv(fil
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值