在分析客户流失过程中,采用峰峦图对各种客户状态(活跃、不活跃、濒临流失、流失)进行特征分析,输出结果如下图所示。
- 橘红色是客户常去加油站的所占的比率,从图上可以看出流失客户去的加油站比较散,比例趋近零的比较多,而活跃用户较稳定去某加油站。
- 蓝灰色系列图表示客户余额均值,流失客户的余额均值在0处有些分布,而活跃用户则多在1000元左右(为了集中一张图显示,且比例均衡,则对余额取log10等计算,详见代码)。
如何实现实现?本案例采用Python上,基于matplotlib的Joyplots工具。
Joyplots
是图的堆叠,部分重叠的密度图,就这么简单。它们是一种很好的方法来绘制数据,以直观地比较分布,特别是那些在一个维度上变化的分布(例如,随时间变化)。
- Python 3.5+
- numpy
- scipy >= 0.11
- matplotlib
- pandas >= 0.20 Warning: compatibility with pandas >= 0.25 requires joypy >= 0.2.1
pip install joypy Successfully installed joypy-0.2.5
多特征按类别显示代码
import pandas as pd import time import matplotlib.pyplot as plt import seaborn as sns from matplotlib import cm import numpy as np import joypy filename = '客户特征分析数据集.csv' df = pd.read_csv(fil