模型训练中的L1正则化和L2正则化,这是一个机器学习中非常核心且实用的概念。
核心思想:对抗过拟合
首先,为什么需要正则化?
当模型过于复杂(例如参数过多、模型结构太强)时,它可能会过度学习训练数据中的细节和噪声,导致在训练集上表现极好,但在未见过的测试集上表现很差。这种现象称为过拟合。
正则化的核心目的就是防止过拟合,通过向模型的损失函数中添加一个“惩罚项”,来限制模型参数的大小,从而鼓励模型变得更简单、更泛化。
1. L2正则化 - 权重衰减
基本概念
L2正则化是最常见的正则化形式。它在原始的损失函数上增加了一个与所有权重参数的平方和成正比的项。
- 别名:权重衰减、岭回归(用于线性回归时)。
- 惩罚项:所有模型权重(参数)的平方和。数学公式为:
λ * Σ(wi²),其中wi是单个权重,λ是控制正则化强度的超参数。
修改后的损失函数
最终损失 = 原始损失(如均方误差、交叉熵) + (λ/2) * Σ(wi²)
(注意:有些写法会包含一个 1/2 的系数,这是为了后续求导方便,本质不变。)
工作原理与效果
- 作用机制:L2惩罚项会“惩罚”那些特别大的权重值。因为平方项的存在,大的权重会比小的权重受到更严厉的惩罚。为了最小化总损失,优化算法会倾向于让所有权重都均匀地变小,而不是让某些权重变得特别大。
- 几何解释:在优

最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



