完全重建QMF滤波器组的设计

完全重建QMF滤波器组的设计

概述

完全重建QMF滤波器组最大的优点是在对信号进行抽取后,可以根据每个子带的不同特征分别进行处理,而插值和合成环节又能消除信号失真的各种因素,因此被广泛用于语音处理、图像处理、国防通信和小波变换中。

两通道正交镜像滤波器组理论

在这里插入图片描述
上图是一个两通道正交镜像滤波器组,在分析滤波器组一侧,输入信号(设为宽带信号)被分成K个子频带信号(窄带信号),通过抽取可以降低采样率,在综合滤波器一侧,通过零值内插和带通滤波可以重建原来的信号。

如果输出信号与输入信号相比,幅度上只相差一个固定的倍数,时间上有一个固定的延迟,那么就成为是对输入信号的完全重建。

对于一个给定的信号,经过分析滤波器后,再进行抽取、编码、传输,可以通过零值内插、综合滤波器滤波、求和运算得到恢复和重建,但是重建后的信号并不能与原始信号完全相同,两者之间存在的误差主要包括:

①混叠失真。由抽取和内插产生的混叠和镜像带来的误差,导致分析滤波器组和综合滤波器组的频带不能完全分开

②幅度失真。由于分析和综合滤波器组的频带在通带内不是全通函数,其幅频特性波纹会产生误差

③相位失真。由滤波器相频特性的非线性所产生的误差

④量化失真。由编、解码产生的误差,与量化噪声相似,这类误差无法完全消除,只能设法减小

因此,在设计QMF组时,就需要综合考虑如何减小和消除上述的各类误差。当两通道无混叠滤波器组的分解滤波器满足​时,称滤波器组为正交镜像滤波器组(QMFB),且滤波器的幅度特性满足​。

完全重建QMFB遇到的问题和解决办法

在完全重建QMFB过程中,希望设计的滤波器通带尽量平、过渡带尽量窄,且阻带尽可能快速衰减。

解决方案如下:

①用FIR QMF滤波器组,去除相位失真的前提下,尽可能的减小幅度失真,近似实现完全重建

②用IIR QMF滤波器组,去除幅度失真,不考虑相位失真,近似实现完全重建

③修正QMF滤波器​的关系,去考虑更合理的形式,从而实现完全重建

利用MATLAB实现完全重建QMFB

利用MATLAB实现完全重建QMFB的设计,只需知道各滤波器的阶数​和滤波器的通带截止频率 w w w​,就可以得到完全重建QMFB的分析,误差较小且能达到良好的精度,综合滤波器组的时域形式为​ h 0 , h 1 , g 0 , g 1 h_0,h_1,g_0,g_1 h0,h1,g0,g1。其中​ N N N必须为奇数,​ w w w必须小于0.5。

源代码

N=41;
w=0.43;
[h0,h1,g0,g1]=firpr2chfb(N,w);
[H1z,w]=freqz(h0,1,512);
H1_abs=abs(H1z);H1_db=20*log10(H1_abs);
[H2z,w]=freqz(h1,1,512);
H2_abs=abs(H2z);H2_db=20*log10(H2_abs);
%%%%%%%%%%滤波器h0和h1的幅度响应%%%%%%%%%%
figure(1); 
plot(w/pi,H1_db,'-',w/pi,H2_db,'--'); 
axis([0,1,-100,10]); 
grid 
xlabel('\omega/\pi');ylabel('幅度,dB'); 
sum1=H1_abs.*H1_abs+H2_abs.*H2_abs; 
d=10*log10(sum1);
%%%%%%%%%%%%幅度响应关系误差%%%%%%%%%%%%%
figure(2) 
plot(w/pi,d);grid; 
xlabel('\omega/\pi');ylabel('误差,dB'); 
axis([0,1,-0.04,0.04]); 
%%%%%%%%%%%%%x1(n)%%%%%%%%%%%%%%%%%%%%%
x=zeros(1,500);
x(2)=1;x(3)=1;
x(6)=2;x(7)=2;x(8)=2;
x(17)=1.5;x(18)=1.5;x(19)=1.5;
x(24)=1;x(25)=1;
x(33)=3;x(34)=3;x(35)=3;
%%%%%%%%%%%%%%x2(n)%%%%%%%%%%%%%%%%%%%%
x=zeros(1,500);
x(1)=1;x(2)=1;x(3)=1;
x(9)=2;x(10)=2;x(11)=2;
x(16)=3;x(17)=3;x(18)=3;
x(24)=4;x(25)=4;x(26)=4;
x(33)=3;x(34)=3;x(35)=3;
x(41)=2;x(42)=2;x(43)=2;
x(49)=1;x(50)=1;x(51)=1;
%%%%%%%%%%%%%%x3(n)%%%%%%%%%%%%%%%%%%%%
n=1:500;
T=0.2;
x=sin(n*T);
hlp=mfilt.firdecim(2,h0);
hhp=mfilt.firdecim(2,h1);
glp=mfilt.firinterp(2,g0);
ghp=mfilt.firinterp(2,g1);
x0=filter(hlp,x);
x0=filter(glp,x0);
x1=filter(hhp,x);
x1=filter(ghp,x1);
xidle=x0+x1;
xshift=[zeros(1,N) x(1:end-N)];
e=xidle-xshift;
mes=sum(abs(e).^2)/length(e)
fvtool(h0)
%%%%%%%%%%%%输入信号%%%%%%%%%%%%%%%%%%
figure(4);
plot(x);
%%%%%%%%%%理想输出信号与重建输出信号%%%%%%%
figure(5);
axis([0,500,-1,1]); 
plot(xshift,'r');hold on;
plot(xidle,'-');
axis([0,600,-1.1,1.1]);
%%%%%%%理想输出信号与重建输出信号的偏差%%%%%%
figure(6);
plot(xshift-xidle);

实验结果

滤波器​和​的幅度响应
在这里插入图片描述
可以看到它们的幅度响应成镜像对称,衰减的部分可以相互抵消

幅度响应关系误差

理论公式为

∣ H 1 ( e j w ) ∣ 2 + ∣ H 0 ( e j ( π + w ) ) ∣ 2 ≈ 1 |H_1(e^{jw})|^2+|H_0(e^{j(\pi+w)})|^2 \approx1 H1(ejw)2+H0(ej(π+w))21

10 log ⁡ ( ∣ H 1 ( e j w ) ∣ 2 + ∣ H 0 ( e j ( π + w ) ) ∣ 2 ) ≈ 0 10\log(|H_1(e^{jw})|^2+|H_0(e^{j(\pi+w)})|^2)\approx0 10log(H1(ejw)2+H0(ej(π+w))2)0

在这里插入图片描述从实验结果中也可以看出误差均在0附近

输入信号
在这里插入图片描述
理想输出信号与重建输出信号
在这里插入图片描述
理想输出信号与重建输出信号的偏差
在这里插入图片描述
可以看到理想输出信号与重建输出信号的偏差其实非常的小

h 0 h_0 h0​的幅度响应
在这里插入图片描述
可以看到低通滤波器的幅度响应基本达到了通带尽量平,过渡带尽量窄,且阻带尽可能快速衰减的要求,具有实际意义

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值