By: 潘云登
Date: 2009-7-18
Email: intrepyd@gmail.com
Homepage: http://blog.csdn.net/intrepyd
Copyright: 该文章版权由潘云登所有。可在非商业目的下任意传播和复制。
对于商业目的下对本文的任何行为需经作者同意。
1. 本文内容对应《算法导论》(第2版)》第11章。
2. 主要介绍了散列表的基本概念、散列函数的选择,以及两种解决碰撞的方法(链接法和开放寻址法)。
3. 希望本文对您有所帮助,也欢迎您给我提意见和建议。
4. 本文包含以下内容:
² 散列表的基本概念
² 散列函数
² 解决碰撞的方法
² 完全散列
假设某应用要用到一个动态集合,其中每个元素都有一个属于[0..p]的关键字,此处p是一个不太大的数,且没有两个元素具有相同的关键字,则可以用一个数组[p+1]存储该动态集合,并且使用关键字作为数组下标进行直接寻址。这一直接寻址思想在前面的非比较排序中就有所应用。然而,当p很大并且实际要存储的动态集合大小n<<p时,这样一个数组将浪费大部分空间。
散列表(Hash table),使用具有m个槽位的数组来存储大小为n的动态集合。α=n/m被定义为散列表的装载因子。在散列表中,具有关键字k的元素的下标为h(k),即利用散列函数h,根据关键字k计算出槽的位置。散列函数h将关键字域[0..p]映射到散列表[0..m-1]的槽位上,这里,m可以远小于p,从而缩小了需要处理的下标范围,并相应地降低了空间开销。散列表带来的问题是:两个关键字可能映射到同一个槽上,这种情形称为碰撞。因此,散列函数h应当将每个关键字等可能地散列到m个槽位的任何一个中去,并与其它关键字已被散列到哪一个槽位中无关,从而避免或者至少最小化碰撞。
多数散列函数都假定关键字域为自然数集。如果所给关键字不是自然数,则必须有一种方法将它们解释为自然数。这里,介绍三种主要的散列函数:
l 除法散列法:通过取k除以m的余数,来将关键字k映射到m个槽的某一个中去,即散列函数为
h(k) = k mod m |
当应用除法散列法时,要注意m的选择,这也是除法散列法的主要缺点。m不应是2的幂,因为如果m=2p,则h(k)就是k的p个最低有效位。相反,散列函数应该考虑关键字的所有位。可以选作m的值通常是与2的整数幂不太接近的质数。
l 乘法散列法:首先,用关键字k乘上常数A(0<A<1),并抽取kA的小数部分;然后,用m乘以这个值,再取结果的底(即整数部分)。散列函数可表达为:
h(k) = ⌊m(kA mod 1)⌋ |
乘法方法的一个优点是对m的选择没有特别的要求,一般选择它为2的某个幂次(m=2p)。该方法对任何的A值都适用,但对某些值效果更好。A=(sqrt(5)-1)/2=0.6180339…是一个比较理想的值。
l 全域散列(universal hashing):在执行开始时,从一族仔细设计的函数中,随机地选择一个作为散列函数。这里的随机选择针对的是一次对散列表的应用,而不是一次简单的插入或查找操作。散列函数的确定性,是查找操作正确执行的保证。全域散列法确保,当k!=l时,两者发生碰撞的概率不大于1/m。设计一个全域散列函数类的方法如下,该方法中,散列表大小m的大小是任意的。
选择一个足够大的质数p,使得每一个可能的关键字都落在0到p-1的范围内。设Zp表示集合{0, 1, …, p-1},Zp*表示集合{1, 2, …, p-1}。对于任何a∈Zp*和任何b∈Zp,定义散列函数ha,b ha,b = ((ak+b) mod p) mod m 所有这样的散列函数构成的函数族为: Hp,m = {ha,b : a∈Zp*和b∈Zp} 由于对a来说有p-1种选择,对于b来说有p种选择,因而,Hp,m中共有p(p-1)个散列函数。 |
解决碰撞的方法主要有两种:链接法和开放寻址法。
l 链接法(chaining):把散列到同一槽中的所有元素都存放在一个链表中。每个槽中有一个指针,指向由所有散列到该槽的元素构成的链表的头。如果不存在这样的元素,则指针为空。如果链接法使用的是双向链表,那么删除操作的最坏情况运行时间与插入操作相同,都为O(1),而平均情况下一次成功的查找需要Θ(1+α)时间。
l 开放寻址法(open addressing):所有的元素都存放在散列表中。因此,适用于动态集合大小n不大于散列表大小的情况,即装载因子不超过1。否则,可能发生散列表溢出。在开放寻址中,当要插入一个元素时,可以连续地探查散列表的各项,直到找到一个空槽来放置待插入的关键字。探查的顺序不一定是0, 1, …, m-1,而是要依赖于待插入的关键字k。于是,将探查号作为散列函数的第二个输入参数。为了使所有的槽位都能够被探查到,探查序列<h(k,0), h(k,1), …, h(k,m-1)>必须是<0, 1, …, m-1>的一个排列。有三种技术常用来计算开放寻址法中的探查序列:线性探查、二次探查,以及双重探查。
² 线性探查(linear probing):使用的散列函数如下
h(k,i) = (h’(k) + i) mod m, i=0, 1, …, m-1 |
h’为一个普通的散列函数,见前面的介绍。线性探查存在一个称为一次群集的问题,即随着时间的推移,连续被占用的槽不断增加,平均查找时间也随着不断增加。但是,线性探查的优点在于,对m的取值没有特殊的要求。
² 二次探查(quadratic probing):使用的散列函数如下
h(k,i) = (h’(k) +c1 i + c2 i2) mod m, i=0, 1, …, m-1 |
为了能够充分利用散列表,c1、c2和m的值要受到限制。一种好的选择是,m为2的某个幂次(m=2p),c1=c2=1/2。二次探查,不会顺序地探查每一个槽位,解决了一次群集问题。但是,如果两个关键字的初始探查位置相同,那么它们的探查序列也是相同的,这一性质导致一种程度较轻的群集现象,称为二次群集。
² 双重散列(double hashing):使用的散列函数如下
h(k,i) = (h1(k) + i h2(k)) mod m, i=0, 1, …, m-1 |
为能查找整个散列表,值h2(k)要与表的大小m互质。确保这一条件成立的一种方法是取m为2的幂,并设计一个总能产生奇数的h2。另一种方法是取m为质数,并设计一个总是产生较m小的正整数的h2。例如,可以取m为质数,h2(k)=1+(k mod m’),m’=m-1。
如果某一种散列技术在进行查找时,其最坏情况内存访问次数为O(1)的话,则称其为完全散列(perfect hashing)。通常利用一种两级的散列方案,每一级上都采用全域散列。为了确保在第二级上不出现碰撞,需要让第二级散列表Sj的大小mj为散列到槽j中的关键字数nj的平方。如果利用从某一全域散列函数类中随机选出的散列函数h,来将n个关键字存储到一个大小为m=n的散列表中,并将每个二次散列表的大小置为mj=nj2 (j=0, 1, …, m-1),则在一个完全散列方案中,存储所有二次散列表所需的存储总量的期望值小于2n。
/* * chain_hash.c * Implement of hash table using chaining method. * * Author: Yundeng Pan * Date: 2009-7-18 * Email: intrepyd@gmail.com * Blog: http://blog.csdn.net/intrepyd */ #include <stdio.h> #include <stdlib.h> #include "chain_hash.h"
#define HASH_CONSTANT 0.6180339
typedef struct node { int key; struct node *prev; struct node *next; }chain_hash_node;
chain_hash_node *new_chain_hash_table(int hash_table_size) { int i; chain_hash_node *chain_hash_table;
chain_hash_table = malloc(sizeof(chain_hash_node)*hash_table_size); for(i=0; i<hash_table_size; i++) { chain_hash_table[i].key = 0; chain_hash_table[i].prev = NULL; chain_hash_table[i].next = NULL; }
return chain_hash_table; }
void free_chain_hash_table(chain_hash_node *chain_hash_table, int hash_table_size) { int i; chain_hash_node *node;
for(i=0; i<hash_table_size; i++) { while(chain_hash_table[i].next != NULL) { node = chain_hash_table[i].next; chain_hash_delete(chain_hash_table[i].next); free(node); node = NULL; } } free(chain_hash_table); chain_hash_table = NULL; }
void chain_hash_delete(chain_hash_node *node) { node->prev->next = node->next; if(node->next != NULL) node->next->prev = node->prev; }
int chain_hash_func(int hash_table_size, int value) { return (hash_table_size * ((value*HASH_CONSTANT)-(int)(value*HASH_CONSTANT))); }
void chain_hash_insert(chain_hash_node *chain_hash_table, int hash_table_size, int value) { int index; chain_hash_node *node;
index = chain_hash_func(hash_table_size, value); node = malloc(sizeof(chain_hash_node)); node->key = value; node->prev = &chain_hash_table[index]; if(chain_hash_table[index].next != NULL) chain_hash_table[index].next->prev = node; node->next = chain_hash_table[index].next; chain_hash_table[index].next = node; }
chain_hash_node *chain_hash_search(chain_hash_node *chain_hash_table, int hash_table_size, int value) { int index; chain_hash_node *node;
index = chain_hash_func(hash_table_size, value); node = chain_hash_table[index].next; while(node != NULL) { if(node->key == value) return node; node = node->next; }
return NULL; }
void chain_hash_print(chain_hash_node *chain_hash_table, int hash_table_size) { int i; chain_hash_node *node;
printf("/nchain_hash_table:"); for(i=0; i<hash_table_size; i++) { printf("/nslot %d: ", i); node = &chain_hash_table[i]; while(node != NULL) { printf("%d ", node->key); node = node->next; } } printf("/n/n"); } |
/* * probe_hash.c * Implement of hash table using linear probing. * * Author: Yundeng Pan * Date: 2009-7-18 * Email: intrepyd@gmail.com * Blog: http://blog.csdn.net/intrepyd */ #include <stdio.h> #include <stdlib.h> #include "probe_hash.h"
#define HASH_CONSTANT 0.6180339 #define NIL -1
int *new_probe_hash_table(int hash_table_size) { int i, *probe_hash_table;
probe_hash_table = malloc(sizeof(int)*hash_table_size); for(i=0; i<hash_table_size; i++) { probe_hash_table[i] = NIL; }
return probe_hash_table; }
void free_probe_hash_table(int *probe_hash_table) { free(probe_hash_table); }
int probe_inner_hash_func(int hash_table_size, int value) { return (hash_table_size * ((value*HASH_CONSTANT)-(int)(value*HASH_CONSTANT))); }
int probe_hash_func(int hash_table_size, int key, int index) { return (key + index) % hash_table_size; }
int probe_hash_insert(int *probe_hash_table, int hash_table_size, int value) { int i, key, pos;
key = probe_inner_hash_func(hash_table_size, value); for(i=0; i<hash_table_size; i++) { pos = probe_hash_func(hash_table_size, key, i); if(probe_hash_table[pos] == NIL) { probe_hash_table[pos] = value; return pos; } }
printf("Hash table overflow!/n"); return NIL; }
int probe_hash_search(int *probe_hash_table, int hash_table_size, int value) { int i, key, pos;
key = probe_inner_hash_func(hash_table_size, value); for(i=0; i<hash_table_size; i++) { pos = probe_hash_func(hash_table_size, key, i); if(probe_hash_table[pos] == NIL) break; if(probe_hash_table[pos] == value) return pos; }
printf("Not found!/n"); return NIL; }
void probe_hash_delete(int *probe_hash_table, int hash_table_size, int value) { int pos;
pos = probe_hash_search(probe_hash_table, hash_table_size, value); if(pos != NIL) probe_hash_table[pos] = NIL; }
void probe_hash_print(int *probe_hash_table, int hash_table_size) { int i;
printf("/nprobe_hash_table:"); for(i=0; i<hash_table_size; i++) { printf("/nslot %d: %d", i, probe_hash_table[i]); } printf("/n/n"); }
|