整体思路:
问题的解可以分为两种情况:
1)解没有跨过A[n-1]到A[0],即普通的求子数组和的最大值
2)解跨过A[n-1]到A[0]
对第二种情况,只要找到从A[0]开始和最大的一段(A[0],...,A[j])(0<=j<n)以及A[n-1]结尾的和最大的一段(A[i],...,A[n-1])(0<=i<n),那么第2种情况中,和的最大值M_2为:
M_2=A[i]+...A[n-1]+A[0]+...+A[j]
如果i<=j,则
M_2=A[0]+...+A[n-1] - 子数组和为负的最小值(数组元素全为正则返回0)
否则
M_2=A[0]+...+A[j]+A[i]+...+A[n-1]
代码如下,其中也分了A[0]+...+A[n-1]全为负的时候返回0(代码中define RETURN_ZERP)跟返回最大的负数(RETURN_MAXMINUS)这两种情况,lpos对应于整体思路中的i,rpos对应于整体思路中的j
- /*******************************问题描述****************************
- 一个有N个整数元素的一维数组(A[0],A[1],...A(n-1)(首尾可以相邻),它包含
- 很多子数组,求子数组之和的最大值,当数组元素全部为负的时候,有两种处
- 理办法,第一种是返回0,第二种是返回数组中最大的负数
- *******************************************************************/
- /*******************************整体思路***************************
- 问题的解可以分为两种情况:
- 1)解没有跨过A[n-1]到A[0],即普通的求子数组和的最大值
- 2)解跨过A[n-1]到A[0]
- 对第二种情况,只要找到从A[0]开始和最大的一段(A[0],...,A[j])(0<=j<n)
- 以及A[n-1]结尾的和最大的一段(A[i],...,A[n-1])(0<=i<n),那么第2种情况
- 中,和的最大值M_2为:
- M_2=A[i]+...A[n-1]+A[0]+...+A[j]
- 如果i<=j,则
- M_2=A[0]+...+A[n-1]-子数组和为负的最小值
- 否则
- M_2=A[0]+...+A[j]+A[i]+...+A[n-1]
- *******************************************************************/
- #include<iostream>
- using namespace std;
- #define RETURN_MAXMINUS
- #ifdef RETURN_MAXMINUS
- /*********************************动态规划**************************************
- 假设A[0],A[1],...A(n-1)的最大子段为A[i],...,A[j],则有以下3种情况,
- 1)当0=i=j的时候,元素A[0]本身构成和最大的一段
- 2)当0=i<j的时候,和最大的一段以A[0]开头
- 3)当0<i时候,元素A[0]跟和最大的一段没有关系
- 则原始问题A[0],A[1],...A(n-1)的解All[0]=max{A[0],A[0]+Start[1],ALL[1]}
- 求得A[0],A[1],...A[n-1](首尾不连接)的情况后再考虑整体思路中的第二种情况
- *********************************************************************************/
- //从尾到首动态规划
- int MaxSum(int *A,int length){
- //先求出A[0],A[1],...A[n-1](首尾不连接)的情况下子数组和最大值nAll
- int nStart=A[length-1];
- int nAll=A[length-1];
- for(int i=length-2;i>=0;i--){
- nStart=max(A[i],A[i]+nStart);
- nAll=max(nStart,nAll);
- }
- //下面处理整体思路的第二种情况,即跨过A[n-1],A[0]
- //先求A[n-1]结尾的和最大的一段(A[i],...,A[n-1])(0<=i<n)
- int sum=0;
- int ltempmax=-10000000;
- int lpos=length;
- for(int i=length-1;i>=0;i--){
- sum+=A[i];
- if(sum>ltempmax){
- ltempmax=sum;
- lpos=i;
- }
- }
- //求A[0]开始和最大的一段(A[0],...,A[j])(0<=j<n)
- sum=0;
- int rtempmax=-10000000;
- int rpos=-1;
- for(int i=0;i<length;i++){
- sum+=A[i];
- if(sum>rtempmax){
- rtempmax=sum;
- rpos=i;
- }
- }
- //如果lpos<=rpos,则循环数组中可能出现的子数组最大值要么是A[0]...A[n-1]子数组和的最大值nAll
- //要么是整个数组A[0]...A[n-1]的和再减去A[0]...A[n-1]中子数组和为负数的最小值
- if(lpos<=rpos){
- //求数组中和为负数且的最小值
- int minStart=0;
- int minAll=0;
- for(int i=0;i<length;i++){
- minStart=min(0,A[i]+minStart);
- minAll=min(minStart,minAll);
- }
- int tempmax=ltempmax+rtempmax;
- for(int i=lpos;i<=rpos;i++){
- tempmax-=A[i];
- }
- //比较A[0]...A[n-1]子数组和的最大值nAll跟A[0]...A[n-1]的和再减去A[0]...A[n-1]中子数组和为负数的最小值
- return max(nAll,tempmax-minAll);
- }else{
- //比较A[0]+...+A[j]+A[i]+...+A[n-1]即ltempmax+rtempmax的值跟A[0]...A[n-1]子数组和的最大值nAll
- return max(nAll,ltempmax+rtempmax);
- }
- }
- #endif
- //#define RETURN_ZERO
- #ifdef RETURN_ZERO
- /*********************************动态规划**************************************
- 假设A[0],A[1],...A(n-1)的最大子段为A[i],...,A[j],则有以下3种情况,
- 1)当0=i=j的时候,元素A[0]本身构成和最大的一段
- 2)当0=i<j的时候,和最大的一段以A[0]开头
- 3)当0<i时候,元素A[0]跟和最大的一段没有关系
- 则原始问题A[0],A[1],...A(n-1)的解All[0]=max{A[0],A[0]+Start[1],ALL[1]}
- 求得A[0],A[1],...A[n-1](首尾不连接)的情况后再考虑整体思路中的第二种情况
- *********************************************************************************/
- //从尾到首动态规划
- int MaxSum(int *A,int length){
- //先求出A[0],A[1],...A[n-1](首尾不连接)的情况下子数组和最大值nAll
- int nStart=0;
- int nAll=0;
- for(int i=length-1;i>=0;i--){
- nStart=max(0,A[i]+nStart);
- nAll=max(nStart,nAll);
- }
- //下面处理整体思路的第二种情况,即跨过A[n-1],A[0]
- //先求A[n-1]结尾的和最大的一段(A[i],...,A[n-1])(0<=i<n)
- int sum=0;
- int ltempmax=-10000000;
- int lpos=length;
- for(int i=length-1;i>=0;i--){
- sum+=A[i];
- if(sum>ltempmax){
- ltempmax=sum;
- lpos=i;
- }
- }
- //求A[0]开始和最大的一段(A[0],...,A[j])(0<=j<n)
- sum=0;
- int rtempmax=-10000000;
- int rpos=-1;
- for(int i=0;i<length;i++){
- sum+=A[i];
- if(sum>rtempmax){
- rtempmax=sum;
- rpos=i;
- }
- }
- //如果lpos<=rpos,则循环数组中可能出现的子数组最大值要么是A[0]...A[n-1]子数组和的最大值nAll
- //要么是整个数组A[0]...A[n-1]的和再减去A[0]...A[n-1]中子数组和为负数的最小值
- if(lpos<=rpos){
- //求数组中和为负数且的最小值
- int minStart=0;
- int minAll=0;
- for(int i=0;i<length;i++){
- minStart=min(0,A[i]+minStart);
- minAll=min(minStart,minAll);
- }
- int tempmax=ltempmax+rtempmax;
- for(int i=lpos;i<=rpos;i++){
- tempmax-=A[i];
- }
- //比较A[0]...A[n-1]子数组和的最大值nAll跟A[0]...A[n-1]的和再减去A[0]...A[n-1]中子数组和为负数的最小值
- return max(nAll,tempmax-minAll);
- }else{
- //比较A[0]+...+A[j]+A[i]+...+A[n-1]即ltempmax+rtempmax的值跟A[0]...A[n-1]子数组和的最大值nAll
- return max(nAll,ltempmax+rtempmax);
- }
- }
- #endif
- #define MAIN
- int main(){
- int a[6]={1,-2,3,5,-3,2};
- int b[6]={1,-2,3,5,-1,2};
- int c[6]={2,-1,3,5,-2,1};
- int d[6]={-9,-2,-3,-5,-3};
- int e[3]={3,-2,3};
- #ifdef RETURN_MAXMINUS
- cout<<"a 的子数组和的最大值是(正确结果应该返回8) "<<MaxSum(a,6)<<endl;
- cout<<"b 的子数组和的最大值是(正确结果应该返回10) "<<MaxSum(b,6)<<endl;
- cout<<"c 的子数组和的最大值是(正确结果应该返回10) "<<MaxSum(c,6)<<endl;
- cout<<"c 的子数组和的最大值是(正确结果应该返回-2) "<<MaxSum(d,5)<<endl;
- cout<<"e 的子数组和的最大值(正确结果应该返回6) "<<MaxSum(e,3)<<endl;
- #endif
- #ifdef RETURN_ZERO
- cout<<"a 的子数组和的最大值是(正确结果应该返回8) "<<MaxSum(a,6)<<endl;
- cout<<"b 的子数组和的最大值是(正确结果应该返回10) "<<MaxSum(b,6)<<endl;
- cout<<"c 的子数组和的最大值是(正确结果应该返回10) "<<MaxSum(c,6)<<endl;
- cout<<"c 的子数组和的最大值是(正确结果应该返回0) "<<MaxSum(d,5)<<endl;
- cout<<"e 的子数组和的最大值(正确结果应该返回6) "<<MaxSum(e,3)<<endl;
- #endif
- system("PAUSE");
- return 0;
- }
- #ifdef MAIN
- #endif